IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v556y2018i7701d10.1038_s41586-018-0030-5.html
   My bibliography  Save this article

Genome evolution across 1,011 Saccharomyces cerevisiae isolates

Author

Listed:
  • Jackson Peter

    (Université de Strasbourg, CNRS, GMGM UMR 7156)

  • Matteo De Chiara

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Anne Friedrich

    (Université de Strasbourg, CNRS, GMGM UMR 7156)

  • Jia-Xing Yue

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • David Pflieger

    (Université de Strasbourg, CNRS, GMGM UMR 7156)

  • Anders Bergström

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Anastasie Sigwalt

    (Université de Strasbourg, CNRS, GMGM UMR 7156)

  • Benjamin Barre

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Kelle Freel

    (Université de Strasbourg, CNRS, GMGM UMR 7156)

  • Agnès Llored

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Corinne Cruaud

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob)

  • Karine Labadie

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob)

  • Jean-Marc Aury

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob)

  • Benjamin Istace

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob)

  • Kevin Lebrigand

    (Université Côte d’Azur, CNRS, IPMC)

  • Pascal Barbry

    (Université Côte d’Azur, CNRS, IPMC)

  • Stefan Engelen

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob)

  • Arnaud Lemainque

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob)

  • Patrick Wincker

    (Commissariat à l’Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob
    CNRS UMR 8030, Université d’Evry Val d’Essonne)

  • Gianni Liti

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Joseph Schacherer

    (Université de Strasbourg, CNRS, GMGM UMR 7156)

Abstract

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single ‘out-of-China’ origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype–phenotype studies in this classic model system.

Suggested Citation

  • Jackson Peter & Matteo De Chiara & Anne Friedrich & Jia-Xing Yue & David Pflieger & Anders Bergström & Anastasie Sigwalt & Benjamin Barre & Kelle Freel & Agnès Llored & Corinne Cruaud & Karine Labadie, 2018. "Genome evolution across 1,011 Saccharomyces cerevisiae isolates," Nature, Nature, vol. 556(7701), pages 339-344, April.
  • Handle: RePEc:nat:nature:v:556:y:2018:i:7701:d:10.1038_s41586-018-0030-5
    DOI: 10.1038/s41586-018-0030-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0030-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0030-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Peris & Emily J. Ubbelohde & Meihua Christina Kuang & Jacek Kominek & Quinn K. Langdon & Marie Adams & Justin A. Koshalek & Amanda Beth Hulfachor & Dana A. Opulente & David J. Hall & Katie Hyma , 2023. "Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Simone Mozzachiodi & Kristoffer Krogerus & Brian Gibson & Alain Nicolas & Gianni Liti, 2022. "Unlocking the functional potential of polyploid yeasts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Dariusz R. Kutyna & Cristobal A. Onetto & Thomas C. Williams & Hugh D. Goold & Ian T. Paulsen & Isak S. Pretorius & Daniel L. Johnson & Anthony R. Borneman, 2022. "Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Simone Mozzachiodi & Lorenzo Tattini & Agnes Llored & Agurtzane Irizar & Neža Škofljanc & Melania D’Angiolo & Matteo De Chiara & Benjamin P. Barré & Jia-Xing Yue & Angela Lutazi & Sophie Loeillet & Ra, 2021. "Aborting meiosis allows recombination in sterile diploid yeast hybrids," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Daniel Sultanov & Andreas Hochwagen, 2022. "Varying strength of selection contributes to the intragenomic diversity of rRNA genes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:556:y:2018:i:7701:d:10.1038_s41586-018-0030-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.