IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v548y2017i7669d10.1038_nature23659.html
   My bibliography  Save this article

Correction: Corrigendum: Complex pectin metabolism by gut bacteria reveals novel catalytic functions

Author

Listed:
  • Didier Ndeh
  • Artur Rogowski
  • Alan Cartmell
  • Ana S. Luis
  • Arnaud Baslé
  • Joseph Gray
  • Immacolata Venditto
  • Jonathon Briggs
  • Xiaoyang Zhang
  • Aurore Labourel
  • Nicolas Terrapon
  • Fanny Buffetto
  • Sergey Nepogodiev
  • Yao Xiao
  • Robert A. Field
  • Yanping Zhu
  • Malcolm A. O’Neill
  • Breeanna R. Urbanowicz
  • William S. York
  • Gideon J. Davies
  • D. Wade Abbott
  • Marie-Christine Ralet
  • Eric C. Martens
  • Bernard Henrissat
  • Harry J. Gilbert

Abstract

Nature 544, 65–70 (2017); doi:10.1038/nature21725 In this Article, the list of symbols used to depict monosaccharides in the figures is not derived from the Consortium of Functional Glycomics or included in ref. 25. Instead, it follows the current Symbol Nomenclature for Glycans (SNFG) system, whichis described in ref. 1. The original Article has not been corrected.

Suggested Citation

  • Didier Ndeh & Artur Rogowski & Alan Cartmell & Ana S. Luis & Arnaud Baslé & Joseph Gray & Immacolata Venditto & Jonathon Briggs & Xiaoyang Zhang & Aurore Labourel & Nicolas Terrapon & Fanny Buffetto &, 2017. "Correction: Corrigendum: Complex pectin metabolism by gut bacteria reveals novel catalytic functions," Nature, Nature, vol. 548(7669), pages 612-612, August.
  • Handle: RePEc:nat:nature:v:548:y:2017:i:7669:d:10.1038_nature23659
    DOI: 10.1038/nature23659
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature23659
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature23659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erika C. Freeman & Erik J. S. Emilson & Thorsten Dittmar & Lucas P. P. Braga & Caroline E. Emilson & Tobias Goldhammer & Christine Martineau & Gabriel Singer & Andrew J. Tanentzap, 2024. "Universal microbial reworking of dissolved organic matter along environmental gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. María Ángeles Rivas & Rocío Casquete & Alberto Martín & María de Guía Córdoba & Emilio Aranda & María José Benito, 2021. "Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    3. Yonggan Sun & Qixing Nie & Shanshan Zhang & Huijun He & Sheng Zuo & Chunhua Chen & Jingrui Yang & Haihong Chen & Jielun Hu & Song Li & Jiaobo Cheng & Baojie Zhang & Zhitian Zheng & Shijie Pan & Ping H, 2023. "Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Alei Geng & Nana Li & Anaiza Zayas-Garriga & Rongrong Xie & Daochen Zhu & Jianzhong Sun, 2024. "Direct Conversion of Minimally Pretreated Corncob by Enzyme-Intensified Microbial Consortia," Agriculture, MDPI, vol. 14(9), pages 1-13, September.
    5. Hao-Tian Wang & Zi-Long Wang & Kuan Chen & Ming-Ju Yao & Meng Zhang & Rong-Shen Wang & Jia-He Zhang & Hans Ågren & Fu-Dong Li & Junhao Li & Xue Qiao & Min Ye, 2023. "Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Stefan Dyksma & Michael Pester, 2023. "Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Diego E. Sastre & Nazneen Sultana & Marcos V. A. S. Navarro & Maros Huliciak & Jonathan Du & Javier O. Cifuente & Maria Flowers & Xu Liu & Pete Lollar & Beatriz Trastoy & Marcelo E. Guerin & Eric J. S, 2024. "Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:548:y:2017:i:7669:d:10.1038_nature23659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.