IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v536y2016i7615d10.1038_nature18593.html
   My bibliography  Save this article

Single-layer MoS2 nanopores as nanopower generators

Author

Listed:
  • Jiandong Feng

    (Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering)

  • Michael Graf

    (Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering)

  • Ke Liu

    (Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering)

  • Dmitry Ovchinnikov

    (Laboratory of Nanoscale Electronics and Structures, Institute of Electrical Engineering and Institute of Materials Science and Engineering, School of Engineering)

  • Dumitru Dumcenco

    (Laboratory of Nanoscale Electronics and Structures, Institute of Electrical Engineering and Institute of Materials Science and Engineering, School of Engineering)

  • Mohammad Heiranian

    (Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign)

  • Vishal Nandigana

    (Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign)

  • Narayana R. Aluru

    (Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign)

  • Andras Kis

    (Laboratory of Nanoscale Electronics and Structures, Institute of Electrical Engineering and Institute of Materials Science and Engineering, School of Engineering)

  • Aleksandra Radenovic

    (Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering)

Abstract

Blue energy is a desirable renewable resource, involving the osmotic transport of ions through a membrane from seawater to fresh water; here, nanopores have been created in two-dimensional molybdenum-disulfide membranes, and shown to generate a substantial osmotic power output.

Suggested Citation

  • Jiandong Feng & Michael Graf & Ke Liu & Dmitry Ovchinnikov & Dumitru Dumcenco & Mohammad Heiranian & Vishal Nandigana & Narayana R. Aluru & Andras Kis & Aleksandra Radenovic, 2016. "Single-layer MoS2 nanopores as nanopower generators," Nature, Nature, vol. 536(7615), pages 197-200, August.
  • Handle: RePEc:nat:nature:v:536:y:2016:i:7615:d:10.1038_nature18593
    DOI: 10.1038/nature18593
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature18593
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature18593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Pullanchery & S. Kulik & T. Schönfeldová & C. K. Egan & G. Cassone & A. Hassanali & S. Roke, 2024. "pH drives electron density fluctuations that enhance electric field-induced liquid flow," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Eli Hoenig & Yu Han & Kangli Xu & Jingyi Li & Mingzhan Wang & Chong Liu, 2024. "In situ generation of (sub) nanometer pores in MoS2 membranes for ion-selective transport," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Jin Wang & Zeyuan Song & Miaolu He & Yongchao Qian & Di Wang & Zheng Cui & Yuan Feng & Shangzhen Li & Bo Huang & Xiangyu Kong & Jinming Han & Lei Wang, 2024. "Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    9. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    10. Ren, Qinlong & Zhu, Huangyi & Chen, Kelei & Zhang, J.F. & Qu, Z.G., 2022. "Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion," Applied Energy, Elsevier, vol. 307(C).
    11. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Zhang, X.F. & Zhang, X. & Qu, Z.G. & Pu, J.Q. & Wang, Q., 2022. "Thermal-enhanced nanofluidic osmotic energy conversion with the interfacial photothermal method," Applied Energy, Elsevier, vol. 326(C).
    13. Song, Dongxing & Li, Lu & Huang, Ce & Wang, Ke, 2023. "Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation," Applied Energy, Elsevier, vol. 334(C).
    14. Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
    15. Chen, Xi & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2022. "Impacts of transmembrane pH gradient on nanofluidic salinity gradient energy conversion," Renewable Energy, Elsevier, vol. 187(C), pages 440-449.
    16. Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.
    17. Hye-Eun Lee & Tomoyo Okumura & Hideshi Ooka & Kiyohiro Adachi & Takaaki Hikima & Kunio Hirata & Yoshiaki Kawano & Hiroaki Matsuura & Masaki Yamamoto & Masahiro Yamamoto & Akira Yamaguchi & Ji-Eun Lee , 2024. "Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Jiao, Yanmei & Yang, Chun & Zhang, Wenyao & Wang, Qiuwang & Zhao, Cunlu, 2024. "A review on direct osmotic power generation: Mechanism and membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    21. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.
    22. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:536:y:2016:i:7615:d:10.1038_nature18593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.