IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v534y2016i7608d10.1038_nature18298.html
   My bibliography  Save this article

Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex

Author

Listed:
  • Xiang Wang

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Jing Feng

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Yuan Xue

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Zeyuan Guan

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Delin Zhang

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Zhu Liu

    (Zhejiang University, School of Medicine)

  • Zhou Gong

    (CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences)

  • Qiang Wang

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Jinbo Huang

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

  • Chun Tang

    (Zhejiang University, School of Medicine
    CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences)

  • Tingting Zou

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University
    College of Life Sciences and Technology, Huazhong Agricultural University)

  • Ping Yin

    (National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University)

Abstract

The structure of the METTL3–METTL14 complex, which mediates N6-adenosine methylation of RNA, suggests that the METTL3 subunit is the catalytic core while METTL14 serves to bind RNA.

Suggested Citation

  • Xiang Wang & Jing Feng & Yuan Xue & Zeyuan Guan & Delin Zhang & Zhu Liu & Zhou Gong & Qiang Wang & Jinbo Huang & Chun Tang & Tingting Zou & Ping Yin, 2016. "Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex," Nature, Nature, vol. 534(7608), pages 575-578, June.
  • Handle: RePEc:nat:nature:v:534:y:2016:i:7608:d:10.1038_nature18298
    DOI: 10.1038/nature18298
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature18298
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature18298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Xiang Zhang & Huilong Yin & Xiaofang Zhang & Xunliang Jiang & Yongkang Liu & Haolin Zhang & Yingran Peng & Da Li & Yanping Yu & Jinbao Zhang & Shuli Cheng & Angang Yang & Rui Zhang, 2022. "N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Jiyun Chen & Rong Hu & Ying Chen & Xiaofeng Lin & Wenwen Xiang & Hong Chen & Canglin Yao & Liang Liu, 2022. "Structural basis for MTA1c-mediated DNA N6-adenine methylation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Yaodong Zhang & Zijian Ma & Changxian Li & Cheng Wang & Wangjie Jiang & Jiang Chang & Sheng Han & Zefa Lu & Zicheng Shao & Yirui Wang & Hongwei Wang & Chenyu Jiao & Dong Wang & Xiaofeng Wu & Hongbing , 2022. "The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Lijun Wang & Jiaqi Wang & Pujiao Yu & Jingyi Feng & Gui-e Xu & Xuan Zhao & Tianhui Wang & H. Immo Lehmann & Guoping Li & Joost P. G. Sluijter & Junjie Xiao, 2022. "METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Qiang Luo & Jiezhen Mo & Hao Chen & Zetao Hu & Baihui Wang & Jiabing Wu & Ziyu Liang & Wenhao Xie & Kangxi Du & Maolin Peng & Yingping Li & Tianyang Li & Yangyi Zhang & Xiaoyan Shi & Wen-Hui Shen & Ya, 2022. "Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Katja Hartstock & Nadine A. Kueck & Petr Spacek & Anna Ovcharenko & Sabine Hüwel & Nicolas V. Cornelissen & Amarnath Bollu & Christoph Dieterich & Andrea Rentmeister, 2023. "MePMe-seq: antibody-free simultaneous m6A and m5C mapping in mRNA by metabolic propargyl labeling and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Yan Xu & Zhuowei Zhou & Xinmei Kang & Lijie Pan & Chang Liu & Xiaoqi Liang & Jiajie Chu & Shuai Dong & Yanli Li & Qiuli Liu & Yuetong Sun & Shanshan Yu & Qi Zhang, 2022. "Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Belinda Baquero-Pérez & Ivaylo D. Yonchev & Anna Delgado-Tejedor & Rebeca Medina & Mireia Puig-Torrents & Ian Sudbery & Oguzhan Begik & Stuart A. Wilson & Eva Maria Novoa & Juana Díez, 2024. "N6-methyladenosine modification is not a general trait of viral RNA genomes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Tianye Zhang & Chaonan Shi & Haichao Hu & Zhuo Zhang & Ziqiong Wang & Zhiqing Chen & Huimin Feng & Peng Liu & Jun Guo & Qisen Lu & Kaili Zhong & ZhiHui Chen & Jiaqian Liu & Jiancheng Yu & Jianping Che, 2022. "N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Huaxia Shi & Ying Xu & Na Tian & Ming Yang & Fu-Sen Liang, 2022. "Inducible and reversible RNA N6-methyladenosine editing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:534:y:2016:i:7608:d:10.1038_nature18298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.