IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v472y2011i7344d10.1038_nature09907.html
   My bibliography  Save this article

A diverse range of gene products are effectors of the type I interferon antiviral response

Author

Listed:
  • John W. Schoggins

    (Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University)

  • Sam J. Wilson

    (Howard Hughes Medical Institute, Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University)

  • Maryline Panis

    (Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University)

  • Mary Y. Murphy

    (Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University)

  • Christopher T. Jones

    (Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University)

  • Paul Bieniasz

    (Howard Hughes Medical Institute, Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University)

  • Charles M. Rice

    (Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University)

Abstract

Antiviral actions of interferon There is growing interest in antiviral interferon-stimulated genes (ISGs), such as IFITM3 and BST2 (also known as tetherin), because of their potential as drug targets. An overexpression screen has been used to assess the impact of several hundred ISGs on the replication of a number of viruses, including HIV-1 and hepatitis C virus. Combinations of validated antiviral ISGs were found to have additive effects and to converge on translational inhibition. Surprisingly, some ISGs actually enhance the replication of certain viruses, underlining the complexity of the response to interferon.

Suggested Citation

  • John W. Schoggins & Sam J. Wilson & Maryline Panis & Mary Y. Murphy & Christopher T. Jones & Paul Bieniasz & Charles M. Rice, 2011. "A diverse range of gene products are effectors of the type I interferon antiviral response," Nature, Nature, vol. 472(7344), pages 481-485, April.
  • Handle: RePEc:nat:nature:v:472:y:2011:i:7344:d:10.1038_nature09907
    DOI: 10.1038/nature09907
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09907
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kami Pekayvaz & Alexander Leunig & Rainer Kaiser & Markus Joppich & Sophia Brambs & Aleksandar Janjic & Oliver Popp & Daniel Nixdorf & Valeria Fumagalli & Nora Schmidt & Vivien Polewka & Afra Anjum & , 2022. "Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Yu-Lin Hsu & Shao-Fu Shi & Wan-Lin Wu & Ling-Jun Ho & Jenn-Haung Lai, 2013. "Protective Roles of Interferon-Induced Protein with Tetratricopeptide Repeats 3 (IFIT3) in Dengue Virus Infection of Human Lung Epithelial Cells," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    3. Jim Zoladek & Priscila El Kazzi & Vincent Caval & Valérie Vivet-Boudou & Marion Cannac & Emma L. Davies & Soléna Rossi & Inès Bribes & Lucile Rouilly & Yannick Simonin & Nolwenn Jouvenet & Etienne Dec, 2024. "A specific domain within the 3′ untranslated region of Usutu virus confers resistance to the exonuclease ISG20," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Duomeng Yang & Tingting Geng & Andrew G. Harrison & Jason G. Cahoon & Jian Xing & Baihai Jiao & Mark Wang & Chao Cheng & Robert E. Hill & Huadong Wang & Anthony T. Vella & Gong Cheng & Yanlin Wang & P, 2024. "UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Xianxian Yang & Bin Tan & Xipeng Zhou & Jian Xue & Xian Zhang & Peng Wang & Chuang Shao & Yingli Li & Chaorui Li & Huiming Xia & Jingfu Qiu, 2015. "Interferon-Inducible Transmembrane Protein 3 Genetic Variant rs12252 and Influenza Susceptibility and Severity: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-14, May.
    6. Nora-Guadalupe P. Ramirez & Jeon Lee & Yue Zheng & Lianbo Li & Bryce Dennis & Didi Chen & Ashwini Challa & Vicente Planelles & Kenneth D. Westover & Neal M. Alto & Iván D’Orso, 2022. "ADAP1 promotes latent HIV-1 reactivation by selectively tuning KRAS–ERK–AP-1 T cell signaling-transcriptional axis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Ning Yang & Joseph M. Luna & Peihong Dai & Yi Wang & Charles M. Rice & Liang Deng, 2022. "Lung type II alveolar epithelial cells collaborate with CCR2+ inflammatory monocytes in host defense against poxvirus infection," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Jerry A Nick & Silvia M Caceres & Jennifer E Kret & Katie R Poch & Matthew Strand & Anna V Faino & David P Nichols & Milene T Saavedra & Jennifer L Taylor-Cousar & Mark W Geraci & Ellen L Burnham & Mi, 2016. "Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
    9. Bianca Schmid & Melanie Rinas & Alessia Ruggieri & Eliana Gisela Acosta & Marie Bartenschlager & Antje Reuter & Wolfgang Fischl & Nathalie Harder & Jan-Philip Bergeest & Michael Flossdorf & Karl Rohr , 2015. "Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant," PLOS Pathogens, Public Library of Science, vol. 11(12), pages 1-36, December.
    10. Maria Di Girolamo & Gaia Fabrizio, 2018. "The ADP-Ribosyl-Transferases Diphtheria Toxin-Like (ARTDs) Family: An Overview," Challenges, MDPI, vol. 9(1), pages 1-24, May.
    11. Pradipta Ghosh & Gajanan D. Katkar & Chisato Shimizu & Jihoon Kim & Soni Khandelwal & Adriana H. Tremoulet & John T. Kanegaye & Joseph Bocchini & Soumita Das & Jane C. Burns & Debashis Sahoo, 2022. "An Artificial Intelligence-guided signature reveals the shared host immune response in MIS-C and Kawasaki disease," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:472:y:2011:i:7344:d:10.1038_nature09907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.