IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v468y2010i7321d10.1038_nature09614.html
   My bibliography  Save this article

Myelination and support of axonal integrity by glia

Author

Listed:
  • Klaus-Armin Nave

    (Max Planck Institute of Experimental Medicine)

Abstract

The myelination of axons by glial cells was the last major step in the evolution of cells in the vertebrate nervous system, and white-matter tracts are key to the architecture of the mammalian brain. Cell biology and mouse genetics have provided insight into axon–glia signalling and the molecular architecture of the myelin sheath. Glial cells that myelinate axons were found to have a dual role by also supporting the long-term integrity of those axons. This function may be independent of myelin itself. Myelin abnormalities cause a number of neurological diseases, and may also contribute to complex neuropsychiatric disorders.

Suggested Citation

  • Klaus-Armin Nave, 2010. "Myelination and support of axonal integrity by glia," Nature, Nature, vol. 468(7321), pages 244-252, November.
  • Handle: RePEc:nat:nature:v:468:y:2010:i:7321:d:10.1038_nature09614
    DOI: 10.1038/nature09614
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09614
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Alberto Lazari & Piergiorgio Salvan & Lennart Verhagen & Michiel Cottaar & Daniel Papp & Olof Jens van der Werf & Bronwyn Gavine & James Kolasinski & Matthew Webster & Charlotte J. Stagg & Matthew F. , 2022. "A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yongwoo Kwon & Jin Hee Hong & Sungsam Kang & Hojun Lee & Yonghyeon Jo & Ki Hean Kim & Seokchan Yoon & Wonshik Choi, 2023. "Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Quiroz-González, Salvador & Rodríguez-Torres, Erika Elizabeth & Segura-Alegría, Bertha & Pereira-Venegas, Javier & Lopez-Gomez, Rosa Estela & Jiménez-Estrada, Ismael, 2016. "Detrended fluctuation analysis of compound action potentials re-corded in the cutaneous nerves of diabetic rats," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 223-233.
    5. Frederic Fiore & Khaleel Alhalaseh & Ram R. Dereddi & Felipe Bodaleo Torres & Ilknur Çoban & Ali Harb & Amit Agarwal, 2023. "Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:468:y:2010:i:7321:d:10.1038_nature09614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.