IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v440y2006i7083d10.1038_nature04710.html
   My bibliography  Save this article

hERG potassium channels and cardiac arrhythmia

Author

Listed:
  • Michael C. Sanguinetti

    (University of Utah)

  • Martin Tristani-Firouzi

    (Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah
    University of Utah)

Abstract

hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.

Suggested Citation

  • Michael C. Sanguinetti & Martin Tristani-Firouzi, 2006. "hERG potassium channels and cardiac arrhythmia," Nature, Nature, vol. 440(7083), pages 463-469, March.
  • Handle: RePEc:nat:nature:v:440:y:2006:i:7083:d:10.1038_nature04710
    DOI: 10.1038/nature04710
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04710
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua Mayourian & Ruben M Savizky & Eric A Sobie & Kevin D Costa, 2016. "Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-29, July.
    2. Moniruzzaman & Mohammed Jabedul Hoque & Mohammad Nasir Uddin & Amrin Ahsan & Tareq Mahmud, 2018. "Quantum Chemical, Molecular Docking, and ADMET Predictions of Ketorolac and its Modified Analogues," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 11(5), pages 8723-8729, December.
    3. Fang Du & Joseph J Babcock & Haibo Yu & Beiyan Zou & Min Li, 2015. "Global Analysis Reveals Families of Chemical Motifs Enriched for hERG Inhibitors," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-21, February.
    4. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    5. Dahai Yu & Lin Lv & Li Fang & Bo Zhang & Junnan Wang & Ge Zhan & Lei Zhao & Xin Zhao & Baoxin Li, 2017. "Inhibitory effects and mechanism of dihydroberberine on hERG channels expressed in HEK293 cells," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-19, August.
    6. Moniruzzaman & Mohammed Jabedul Hoque & Amrin Ahsan & Md Belayet Hossain, 2018. "Molecular Docking, Pharmacokinetic, and DFT Calculation of Naproxen and its Degradants," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(5), pages 7360-7365, October.
    7. Haiyan Mao & Xiaoli Lu & Justin Michael Karush & Xiaoyan Huang & Xi Yang & Yanna Ba & Ying Wang & Ningsheng Liu & Jianqing Zhou & Jiangfang Lian, 2013. "Pharmacologic Approach to Defective Protein Trafficking in the E637K-hERG Mutant with PD-118057 and Thapsigargin," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-12, June.
    8. Bryan Cernuda & Christopher Thomas Fernandes & Salma Mohamed Allam & Matthew Orzillo & Gabrielle Suppa & Zuleen Chia Chang & Demosthenes Athanasopoulos & Zafir Buraei, 2019. "The molecular determinants of R-roscovitine block of hERG channels," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
    9. Carlos A. Z. Bassetto & Flavio Costa & Carlo Guardiani & Francisco Bezanilla & Alberto Giacomello, 2023. "Noncanonical electromechanical coupling paths in cardiac hERG potassium channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:440:y:2006:i:7083:d:10.1038_nature04710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.