IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7010d10.1038_nature02966.html
   My bibliography  Save this article

A general mechanism for perceptual decision-making in the human brain

Author

Listed:
  • H. R. Heekeren

    (NIH)

  • S. Marrett

    (NIH)

  • P. A. Bandettini

    (NIH
    NIH)

  • L. G. Ungerleider

    (NIH)

Abstract

Findings from single-cell recording studies suggest that a comparison of the outputs of different pools of selectively tuned lower-level sensory neurons may be a general mechanism by which higher-level brain regions compute perceptual decisions. For example, when monkeys must decide whether a noisy field of dots is moving upward or downward, a decision can be formed by computing the difference in responses between lower-level neurons sensitive to upward motion and those sensitive to downward motion1,2,3,4. Here we use functional magnetic resonance imaging and a categorization task in which subjects decide whether an image presented is a face or a house to test whether a similar mechanism is also at work for more complex decisions in the human brain and, if so, where in the brain this computation might be performed. Activity within the left dorsolateral prefrontal cortex is greater during easy decisions than during difficult decisions, covaries with the difference signal between face- and house-selective regions in the ventral temporal cortex, and predicts behavioural performance in the categorization task. These findings show that even for complex object categories, the comparison of the outputs of different pools of selectively tuned neurons could be a general mechanism by which the human brain computes perceptual decisions.

Suggested Citation

  • H. R. Heekeren & S. Marrett & P. A. Bandettini & L. G. Ungerleider, 2004. "A general mechanism for perceptual decision-making in the human brain," Nature, Nature, vol. 431(7010), pages 859-862, October.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7010:d:10.1038_nature02966
    DOI: 10.1038/nature02966
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02966
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fisher, Geoffrey, 2021. "A multiattribute attentional drift diffusion model," Organizational Behavior and Human Decision Processes, Elsevier, vol. 165(C), pages 167-182.
    2. Isabelle Brocas & Juan D Carrillo, 2007. "Reason, Emotion, and Information Processing in the Brain," Levine's Working Paper Archive 122247000000001594, David K. Levine.
    3. Konstantinos Tsetsos & Thomas Pfeffer & Pia Jentgens & Tobias H Donner, 2015. "Action Planning and the Timescale of Evidence Accumulation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    4. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    5. Wang, Xinyi & Zhang, Xiyun & Zheng, Muhua & Xu, Leijun & Xu, Kesheng, 2023. "Noise-induced coexisting firing patterns in hybrid-synaptic interacting networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    6. Michiel van Elk, 2015. "Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-15, June.
    7. Gabriele De Luca & Thomas J. Lampoltshammer & Shahanaz Parven & Johannes Scholz, 2022. "A Literature Review on the Usage of Agent-Based Modelling to Study Policies for Managing International Migration," Social Sciences, MDPI, vol. 11(8), pages 1-32, August.
    8. Clithero, John A., 2018. "Improving out-of-sample predictions using response times and a model of the decision process," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 344-375.
    9. Urszula Foryś & Natalia Z. Bielczyk & Katarzyna Piskała & Martyna Płomecka & Jan Poleszczuk, 2017. "Impact of Time Delay in Perceptual Decision-Making: Neuronal Population Modeling Approach," Complexity, Hindawi, vol. 2017, pages 1-14, September.
    10. Sebastian Bitzer & Jelle Bruineberg & Stefan J Kiebel, 2015. "A Bayesian Attractor Model for Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-35, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7010:d:10.1038_nature02966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.