IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i7002d10.1038_nature02808.html
   My bibliography  Save this article

Impact of climate change on marine pelagic phenology and trophic mismatch

Author

Listed:
  • Martin Edwards

    (The Laboratory, Citadel Hill)

  • Anthony J. Richardson

    (The Laboratory, Citadel Hill)

Abstract

Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change1. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production2,3. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals4 are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.

Suggested Citation

  • Martin Edwards & Anthony J. Richardson, 2004. "Impact of climate change on marine pelagic phenology and trophic mismatch," Nature, Nature, vol. 430(7002), pages 881-884, August.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:7002:d:10.1038_nature02808
    DOI: 10.1038/nature02808
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02808
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaalali, Aurélie & Beaugrand, Grégory & Raybaud, Virginie & Lassalle, Géraldine & Saint-Béat, Blanche & Le Loc’h, François & Bopp, Laurent & Tecchio, Samuele & Safi, Georges & Chifflet, Marina & Lobr, 2016. "From species distributions to ecosystem structure and function: A methodological perspective," Ecological Modelling, Elsevier, vol. 334(C), pages 78-90.
    2. Hongsheng Bi & Rubao Ji & Hui Liu & Young-Heon Jo & Jonathan A Hare, 2014. "Decadal Changes in Zooplankton of the Northeast U.S. Continental Shelf," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    3. Thomas C. Malone & Paul M. DiGiacomo & Emanuel Gonçalves & Anthony H. Knap & Liana Talaue‐McManus & Stephen de Mora & Jose Muelbert, 2014. "Enhancing the Global Ocean Observing System to meet evidence based needs for the ecosystem‐based management of coastal ecosystem services," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 168-181, August.
    4. Goebel, N.L. & Edwards, C.A. & Zehr, J.P. & Follows, M.J. & Morgan, S.G., 2013. "Modeled phytoplankton diversity and productivity in the California Current System," Ecological Modelling, Elsevier, vol. 264(C), pages 37-47.
    5. Ratté-Fortin, Claudie & Plante, Jean-François & Rousseau, Alain N. & Chokmani, Karem, 2023. "Parametric versus nonparametric machine learning modelling for conditional density estimation of natural events: Application to harmful algal blooms," Ecological Modelling, Elsevier, vol. 482(C).
    6. Virginie Raybaud & Grégory Beaugrand & Eric Goberville & Gaspard Delebecq & Christophe Destombe & Myriam Valero & Dominique Davoult & Pascal Morin & François Gevaert, 2013. "Decline in Kelp in West Europe and Climate," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    7. Anderson, James J. & Gurarie, Eliezer & Bracis, Chloe & Burke, Brian J. & Laidre, Kristin L., 2013. "Modeling climate change impacts on phenology and population dynamics of migratory marine species," Ecological Modelling, Elsevier, vol. 264(C), pages 83-97.
    8. Whitehouse, George A. & Aydin, Kerim Y., 2020. "Assessing the sensitivity of three Alaska marine food webs to perturbations: an example of Ecosim simulations using Rpath," Ecological Modelling, Elsevier, vol. 429(C).
    9. Gretta Pecl & Tim Ward & Zoë Doubleday & Steven Clarke & Jemery Day & Cameron Dixon & Stewart Frusher & Philip Gibbs & Alistair Hobday & Neil Hutchinson & Sarah Jennings & Keith Jones & Xiaoxu Li & Da, 2014. "Rapid assessment of fisheries species sensitivity to climate change," Climatic Change, Springer, vol. 127(3), pages 505-520, December.
    10. Israt Jahan & Dewan Ahsan & Md Hasan Farque, 2017. "Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia: evidence from Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 461-478, April.
    11. Yang Qu & Qianlai Zhuang, 2020. "Evapotranspiration in North America: implications for water resources in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 205-220, February.
    12. Leena Pasanen & Päivi Laukkanen-Nevala & Ilkka Launonen & Sergey Prusov & Lasse Holmström & Eero Niemelä & Jaakko Erkinaro, 2017. "Extraction of sea temperature in the Barents Sea by a scale space multiresolution method – prospects for Atlantic salmon," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2317-2336, October.
    13. Xinyan Mao & Xinyu Guo & Yucheng Wang & Katsumi Takayama, 2019. "Influences of Global Warming on the Larval Survival and Transport of Snow Crab ( Chionoecetes opilio ) in the Sea of Japan," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    14. Rui Xia & Yuan Zhang & Andrea Critto & Jieyun Wu & Juntao Fan & Zhirong Zheng & Yizhang Zhang, 2016. "The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    15. F. Maynou & A. Sabatés & J. Salat, 2014. "Clues from the recent past to assess recruitment of Mediterranean small pelagic fishes under sea warming scenarios," Climatic Change, Springer, vol. 126(1), pages 175-188, September.
    16. Lavenia Ratnarajah & Rana Abu-Alhaija & Angus Atkinson & Sonia Batten & Nicholas J. Bax & Kim S. Bernard & Gabrielle Canonico & Astrid Cornils & Jason D. Everett & Maria Grigoratou & Nurul Huda Ahmad , 2023. "Monitoring and modelling marine zooplankton in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Scharfe, Mirco & Wiltshire, Karen Helen, 2019. "Modeling of intra-annual abundance distributions: Constancy and variation in the phenology of marine phytoplankton species over five decades at Helgoland Roads (North Sea)," Ecological Modelling, Elsevier, vol. 404(C), pages 46-60.
    18. Hooper, Tara & Börger, Tobias & Langmead, Olivia & Marcone, Oceane & Rees, Siân E & Rendon, Olivia & Beaumont, Nicola & Attrill, Martin J. & Austen, Melanie, 2019. "Applying the natural capital approach to decision making for the marine environment," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    19. Koslow, J. Anthony & Couture, Jennifer, 2015. "Pacific Ocean observation programs: Gaps in ecological time series," Marine Policy, Elsevier, vol. 51(C), pages 408-414.
    20. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    21. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    22. Antonio Tulone & Antonino Galatia & Salvatore Lupo & Salvatore Tinervia & Maria Crescimanno, 2019. "What are the effects of sea warming on the fishing industry?," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(2), pages 217-233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:7002:d:10.1038_nature02808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.