IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6949d10.1038_nature01864.html
   My bibliography  Save this article

Unusually large earthquakes inferred from tsunami deposits along the Kuril trench

Author

Listed:
  • Futoshi Nanayama

    (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology)

  • Kenji Satake

    (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology)

  • Ryuta Furukawa

    (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology)

  • Koichi Shimokawa

    (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology)

  • Brian F. Atwater

    (US Geological Survey at University of Washington)

  • Kiyoyuki Shigeno

    (Meiji Consultant Co. Ltd)

  • Shigeru Yamaki

    (Seamus Ltd)

Abstract

The Pacific plate converges with northeastern Eurasia at a rate of 8–9 m per century along the Kamchatka, Kuril and Japan trenches1. Along the southern Kuril trench, which faces the Japanese island of Hokkaido, this fast subduction has recurrently generated earthquakes with magnitudes of up to ∼8 over the past two centuries2,3,4,5,6. These historical events, on rupture segments 100–200 km long, have been considered characteristic of Hokkaido's plate-boundary earthquakes7,8. But here we use deposits of prehistoric tsunamis to infer the infrequent occurrence of larger earthquakes generated from longer ruptures. Many of these tsunami deposits form sheets of sand that extend kilometres inland from the deposits of historical tsunamis. Stratigraphic series of extensive sand sheets, intercalated with dated volcanic-ash layers, show that such unusually large tsunamis occurred about every 500 years on average over the past 2,000–7,000 years, most recently ∼350 years ago. Numerical simulations of these tsunamis are best explained by earthquakes that individually rupture multiple segments along the southern Kuril trench. We infer that such multi-segment earthquakes persistently recur among a larger number of single-segment events.

Suggested Citation

  • Futoshi Nanayama & Kenji Satake & Ryuta Furukawa & Koichi Shimokawa & Brian F. Atwater & Kiyoyuki Shigeno & Shigeru Yamaki, 2003. "Unusually large earthquakes inferred from tsunami deposits along the Kuril trench," Nature, Nature, vol. 424(6949), pages 660-663, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6949:d:10.1038_nature01864
    DOI: 10.1038/nature01864
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01864
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linlin Li & Zhenhua Huang & Qiang Qiu, 2014. "Numerical simulation of erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2251-2277, December.
    2. Joaquin Rodriguez-Vidal & Jose Rodriguez-Llanes & Debarati Guha-Sapir, 2012. "Civil nuclear power at risk of tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1273-1278, September.
    3. Gulam Rasool Bhat & Sankaran Balaji & Maqbool Yousuf, 2023. "Tectonic geomorphology and seismic hazard of the east boundary thrust in northern segment of the Sunda–Andaman subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 401-423, March.
    4. Sumet Phantuwongraj & Montri Choowong, 2012. "Tsunamis versus storm deposits from Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 31-50, August.
    5. Tetsuya Shinozaki & Yuki Sawai & Kazumi Ito & Junko Hara & Dan Matsumoto & Koichiro Tanigawa & Jessica E. Pilarczyk, 2020. "Recent and historical tsunami deposits from Lake Tokotan, eastern Hokkaido, Japan, inferred from nondestructive, grain size, and radioactive cesium analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 713-730, August.
    6. Witold Szczuciński, 2012. "The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(1), pages 115-133, January.
    7. Hongmei Yu & Jiandong Xu & Peng Luan & Bo Zhao & Bo Pan, 2013. "Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1369-1388, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6949:d:10.1038_nature01864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.