IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v418y2002i6898d10.1038_nature00972.html
   My bibliography  Save this article

Sub-ångstrom resolution using aberration corrected electron optics

Author

Listed:
  • P. E. Batson

    (IBM Thomas J. Watson Research Center)

  • N. Dellby

    (Nion R&D)

  • O. L. Krivanek

    (Nion R&D)

Abstract

Following the invention of electron optics during the 1930s, lens aberrations have limited the achievable spatial resolution to about 50 times the wavelength of the imaging electrons1. This situation is similar to that faced by Leeuwenhoek in the seventeenth century, whose work to improve the quality of glass lenses led directly to his discovery of the ubiquitous “animalcules” in canal water, the first hints of the cellular basis of life. The electron optical aberration problem was well understood from the start, but more than 60 years elapsed before a practical correction scheme for electron microscopy was demonstrated2, and even then the remaining chromatic aberrations still limited the resolution. We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope3, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron probe smaller than 1 Å. This performance, about 20 times the electron wavelength at 120 keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer ‘rafts’ of atoms coexisting with Au islands on a carbon substrate. This technique should also allow atomic column imaging of semiconductors, for detection of single dopant atoms, using an electron beam with energy below the damage threshold for silicon.

Suggested Citation

  • P. E. Batson & N. Dellby & O. L. Krivanek, 2002. "Sub-ångstrom resolution using aberration corrected electron optics," Nature, Nature, vol. 418(6898), pages 617-620, August.
  • Handle: RePEc:nat:nature:v:418:y:2002:i:6898:d:10.1038_nature00972
    DOI: 10.1038/nature00972
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00972
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan J. P. Peters & Tiarnan Mullarkey & Emma Hedley & Karin H. Müller & Alexandra Porter & Ali Mostaed & Lewys Jones, 2023. "Electron counting detectors in scanning transmission electron microscopy via hardware signal processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:418:y:2002:i:6898:d:10.1038_nature00972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.