IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v74y2008i1p6-15.html
   My bibliography  Save this article

Transmission–virulence trade-offs in vector-borne diseases

Author

Listed:
  • Alizon, Samuel
  • van Baalen, Minus

Abstract

Though it is commonly supposed that there is a trade-off between virulence and transmission, there is little data and little insight into what it should look like. Here, we consider the specific case of vector-borne parasites (inspired by human malaria) and analyse an embedded model to understand how specific life-cycle aspects may affect this trade-off. First, we find that, for such parasites, the transmission function may have an S-shape. Second, we find that the trade-off obtained for vector-borne parasites is less sensitive to parameter variations than the trade-off obtained for directly transmitted parasites. Third, we find that other parasite traits, such as the conversion from replicative to infective stages, could have important epidemiological implications. Finally, we compare the effect of treatments targeting either the asexual or the sexual parasite life-stage.

Suggested Citation

  • Alizon, Samuel & van Baalen, Minus, 2008. "Transmission–virulence trade-offs in vector-borne diseases," Theoretical Population Biology, Elsevier, vol. 74(1), pages 6-15.
  • Handle: RePEc:eee:thpobi:v:74:y:2008:i:1:p:6-15
    DOI: 10.1016/j.tpb.2008.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580908000397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2008.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2001. "Imperfect vaccines and the evolution of pathogen virulence," Nature, Nature, vol. 414(6865), pages 751-756, December.
    2. Mario Recker & Sean Nee & Peter C. Bull & Sam Kinyanjui & Kevin Marsh & Chris Newbold & Sunetra Gupta, 2004. "Transient cross-reactive immune responses can orchestrate antigenic variation in malaria," Nature, Nature, vol. 429(6991), pages 555-558, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arenas, Abraham J. & González-Parra, Gilberto & Villanueva Micó, Rafael-J., 2010. "Modeling toxoplasmosis spread in cat populations under vaccination," Theoretical Population Biology, Elsevier, vol. 77(4), pages 227-237.
    2. Kathryn A. Hanley & Hélène Cecilia & Sasha R. Azar & Brett A. Moehn & Jordan T. Gass & Natalia I. Oliveira da Silva & Wanqin Yu & Ruimei Yun & Benjamin M. Althouse & Nikos Vasilakis & Shannan L. Rossi, 2024. "Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    2. Gaeta, Giuseppe, 2022. "Mass vaccination in a roaring pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    4. Wang, Lianwen & Liu, Zhijun & Zhang, Xingan, 2016. "Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 47-65.
    5. Reza Yaesoubi & Shiying You & Qin Xi & Nicolas A. Menzies & Ashleigh Tuite & Yonatan H. Grad & Joshua A. Salomon, 2023. "Generating simple classification rules to predict local surges in COVID-19 hospitalizations," Health Care Management Science, Springer, vol. 26(2), pages 301-312, June.
    6. Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
    7. Peng, Xiao-Long & Li, Chun-Yan & Qi, Hong & Sun, Gui-Quan & Wang, Zhen & Wu, Yong-Ping, 2022. "Competition between awareness and epidemic spreading in homogeneous networks with demography," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:74:y:2008:i:1:p:6-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.