The global cropland-sparing potential of high-yield farming
Author
Abstract
Suggested Citation
DOI: 10.1038/s41893-020-0505-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- De Almeida Furtado, Murilo & Meuwissen, Miranda P.M. & Ang, Frederic, 2024. "Land reallocation to increase production and reduce nitrogen surplus: impacts on crop diversity in England and Wales," 2024 Annual Meeting, July 28-30, New Orleans, LA 343878, Agricultural and Applied Economics Association.
- Rapeepan Pitakaso & Kanchana Sethanan & Kim Hua Tan & Ajay Kumar, 2024. "A decision support system based on an artificial multiple intelligence system for vegetable crop land allocation problem," Annals of Operations Research, Springer, vol. 342(1), pages 621-656, November.
- Gerhard Moitzi & Reinhard W. Neugschwandtner & Hans-Peter Kaul & Helmut Wagentristl, 2021. "Crop sequence effects on energy efficiency and land demand in a long-term fertilisation trial," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(12), pages 739-746.
- Fayet, Catherine M.J. & Reilly, Kate H. & Van Ham, Chantal & Verburg, Peter H., 2022. "What is the future of abandoned agricultural lands? A systematic review of alternative trajectories in Europe," Land Use Policy, Elsevier, vol. 112(C).
- Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
- Xie, Zhen & Zhang, Qianqian & Jiang, Chun & Yao, Ruobin, 2024. "Cropland compensation in mountainous areas in China aggravates non-grain production: evidence from Fujian Province," Land Use Policy, Elsevier, vol. 138(C).
- Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
- Shen Yuan & Bruce A. Linquist & Lloyd T. Wilson & Kenneth G. Cassman & Alexander M. Stuart & Valerien Pede & Berta Miro & Kazuki Saito & Nurwulan Agustiani & Vina Eka Aristya & Leonardus Y. Krisnadi &, 2021. "Sustainable intensification for a larger global rice bowl," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Luo, Feng & Wang, Chong & Luo, Shu & Tong, Qihang & Xu, Li, 2024. "Optimizing natural resource markets: Accelerating green growth in the economic recovery," Resources Policy, Elsevier, vol. 89(C).
- Zhao, Na & Chen, Kainan & Wu, Xiaoran & Zhang, Lili & Wang, Wei, 2024. "Cropland fragmentation change across China over the last two decades," Agricultural Systems, Elsevier, vol. 218(C).
- repec:ags:aaea22:335902 is not listed on IDEAS
- Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
- Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
- Jianjian He & Siqi Wang & Reinout Heijungs & Yi Yang & Shumiao Shu & Weiwen Zhang & Anqi Xu & Kai Fang, 2024. "Interprovincial food trade aggravates China’s land scarcity," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
- Shaikh, M. Abdullah & Hadjikakou, Michalis & Geyik, Ozge & Bryan, Brett A., 2024. "Assessing global agri-food system exceedance of national cropland limits for linking responsible consumption and production under SDG 12," Ecological Economics, Elsevier, vol. 215(C).
- Wies, Germán & Groot, Jeroen C.J. & Martinez-Ramos, Miguel, 2023. "In highly-biodiverse tropical landscapes, multiple-objective optimization reveals opportunities for increasing both conservation and agricultural production," Ecological Modelling, Elsevier, vol. 483(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:4:d:10.1038_s41893-020-0505-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.