IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i12d10.1038_s41893-020-0590-x.html
   My bibliography  Save this article

A sunlight-responsive metal–organic framework system for sustainable water desalination

Author

Listed:
  • Ranwen Ou

    (Monash University
    Xiamen University)

  • Huacheng Zhang

    (Monash University)

  • Vinh X. Truong

    (Monash University
    Monash University)

  • Lian Zhang

    (Monash University)

  • Hanaa M. Hegab

    (Monash University)

  • Li Han

    (Zhengzhou University)

  • Jue Hou

    (Monash University)

  • Xiwang Zhang

    (Monash University)

  • Ana Deletic

    (The University of New South Wales)

  • Lei Jiang

    (Monash University
    Chinese Academy of Sciences)

  • George P. Simon

    (Monash University)

  • Huanting Wang

    (Monash University)

Abstract

Light-responsive materials with high adsorption capacity and sunlight-triggered regenerability are highly desired for their low-cost and environmentally friendly industrial separation processes. Here we report a poly(spiropyran acrylate) (PSP) functionalized metal–organic framework (MOF) as a sunlight-regenerable ion adsorbent for sustainable water desalination. Under dark conditions, the zwitterionic isomer quickly adsorbs multiple cations and anions from water within 30 minutes, with high ion adsorption loadings of up to 2.88 mmol g−1 of NaCl. With sunlight illumination, the neutral isomer rapidly releases these adsorbed salts within 4 minutes. Single-column desalination experiments demonstrated that PSP–MOF works efficiently for water desalination. A freshwater yield of 139.5 l kg−1 d−1 and a low energy consumption of 0.11 Wh l−1 would be reached for desalinating 2,233 ppm synthetic brackish water. Importantly, this adsorbent shows excellent stability and cycling performance. This work opens up a new direction for designing stimuli-responsive materials for energy-efficient and sustainable desalination and water purification.

Suggested Citation

  • Ranwen Ou & Huacheng Zhang & Vinh X. Truong & Lian Zhang & Hanaa M. Hegab & Li Han & Jue Hou & Xiwang Zhang & Ana Deletic & Lei Jiang & George P. Simon & Huanting Wang, 2020. "A sunlight-responsive metal–organic framework system for sustainable water desalination," Nature Sustainability, Nature, vol. 3(12), pages 1052-1058, December.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:12:d:10.1038_s41893-020-0590-x
    DOI: 10.1038/s41893-020-0590-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0590-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0590-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Run-Han Li & Xiao-Xin Li & Shengyao Wang & Jiang Liu & Xiao-Xuan Hong & Long-Zhang Dong & Shun-Li Li & Ya-Qian Lan, 2024. "Photocatalytic aerobic oxidation of C(sp3)-H bonds," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Shuqi Xu & Alice J. Hutchinson & Mahdiar Taheri & Ben Corry & Juan F. Torres, 2024. "Thermodiffusive desalination," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Qing Guo & Zhuozhi Lai & Xiuhui Zuo & Weipeng Xian & Shaochun Wu & Liping Zheng & Zhifeng Dai & Sai Wang & Qi Sun, 2023. "Photoelectric responsive ionic channel for sustainable energy harvesting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Lijuan Feng & Yihui Yuan & Bingjie Yan & Tiantian Feng & Yaping Jian & Jiacheng Zhang & Wenyan Sun & Ke Lin & Guangsheng Luo & Ning Wang, 2022. "Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI)," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Chao Li & Yi Zhai & Heming Jiang & Siqi Li & Pengxiang Liu & Longcheng Gao & Lei Jiang, 2024. "Bioinspired light-driven chloride pump with helical porphyrin channels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:12:d:10.1038_s41893-020-0590-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.