IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i5d10.1038_s41893-019-0259-5.html
   My bibliography  Save this article

Changes in crop rotations would impact food production in an organically farmed world

Author

Listed:
  • Pietro Barbieri

    (UMR 1391 ISPA
    UMR 1391 ISPA)

  • Sylvain Pellerin

    (UMR 1391 ISPA)

  • Verena Seufert

    (Vrije Universiteit Amsterdam)

  • Thomas Nesme

    (UMR 1391 ISPA)

Abstract

The debate about organic farming productivity has often focused on its relative crop yields compared with conventional farming. However, conversion to organic farming not only results in changes in crop yields, but also in changes in the types of crops grown. To date, the effects of such changes on global crop production have never been systematically investigated. Here, we provide a novel, spatially explicit estimation of the distribution of crop types grown, as well as crop production, under a scenario of 100% conversion of current cropland to organic farming. Our analysis shows a decrease of −31% harvested area, with primary cereals (wheat, rice and maize) compensated by an increase in the harvested areas with temporary fodders (+63%), secondary cereals (+27%) and pulses (+26%) compared with the conventional situation. These changes, paired with organic-to-conventional yield gaps, lead to a −27% gap in energy production from croplands compared with current production. We found that ~1/3 of this gap is explained by changes in the types of crops grown (a contribution rising to 50% when focusing on food crops only), and that such changes strongly affect the repartition of total production among different crop types. Feeding the world organically would thus require profound adaptations of human diets and animal husbandry.

Suggested Citation

  • Pietro Barbieri & Sylvain Pellerin & Verena Seufert & Thomas Nesme, 2019. "Changes in crop rotations would impact food production in an organically farmed world," Nature Sustainability, Nature, vol. 2(5), pages 378-385, May.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:5:d:10.1038_s41893-019-0259-5
    DOI: 10.1038/s41893-019-0259-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0259-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0259-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qiangyi & Xiang, Mingtao & Sun, Zhanli & Wu, Wenbin, 2021. "The complexity of measuring cropland use intensity: An empirical study," Agricultural Systems, Elsevier, vol. 192(C).
    2. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).
    5. Niraj Prakash Joshi & Luni Piya, 2021. "Food and Nutrient Supply from Organic Agriculture in the Least Developed Countries and North America," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    6. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    7. Carina Isbell & Daniel Tobin & Brian C. Thiede & Kristal Jones & Travis Reynolds, 2024. "The association between crop diversity and children’s dietary diversity: multi-scalar and cross-national comparisons," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 16(4), pages 883-897, August.
    8. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:5:d:10.1038_s41893-019-0259-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.