IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v9y2024i5d10.1038_s41560-023-01434-1.html
   My bibliography  Save this article

Increasing the resilience of the Texas power grid against extreme storms by hardening critical lines

Author

Listed:
  • Julian Stürmer

    (Potsdam Institute for Climate Impact Research
    TU Berlin)

  • Anton Plietzsch

    (Potsdam Institute for Climate Impact Research
    Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems)

  • Thomas Vogt

    (Potsdam Institute for Climate Impact Research)

  • Frank Hellmann

    (Potsdam Institute for Climate Impact Research)

  • Jürgen Kurths

    (Potsdam Institute for Climate Impact Research
    University of Potsdam
    Humboldt Universität zu Berlin)

  • Christian Otto

    (Potsdam Institute for Climate Impact Research)

  • Katja Frieler

    (Potsdam Institute for Climate Impact Research)

  • Mehrnaz Anvari

    (Potsdam Institute for Climate Impact Research
    Fraunhofer Institute for Algorithms and Scientific Computing)

Abstract

The Texas power grid on the Gulf Coast of the United States is frequently hit by tropical cyclones (TCs) causing widespread power outages, a risk that is expected to substantially increase under global warming. Here we introduce a new approach that combines a probabilistic line failure model with a network model of the Texas grid to simulate the spatio-temporal co-evolution of wind-induced failures of high-voltage transmission lines and the resulting cascading power outages from seven major historical TCs. The approach allows reproducing observed supply failures. In addition, compared to existing static approaches, it provides a notable advantage in identifying critical lines whose failure can trigger large supply shortages. We show that hardening only 1% of total lines can reduce the likelihood of the most destructive type of outage by a factor of between 5 and 20. The proposed modelling approach could represent a so far missing tool for identifying effective options to strengthen power grids against future TC strikes, even under limited knowledge.

Suggested Citation

  • Julian Stürmer & Anton Plietzsch & Thomas Vogt & Frank Hellmann & Jürgen Kurths & Christian Otto & Katja Frieler & Mehrnaz Anvari, 2024. "Increasing the resilience of the Texas power grid against extreme storms by hardening critical lines," Nature Energy, Nature, vol. 9(5), pages 526-535, May.
  • Handle: RePEc:nat:natene:v:9:y:2024:i:5:d:10.1038_s41560-023-01434-1
    DOI: 10.1038/s41560-023-01434-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01434-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01434-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    2. Tobias Geiger & Johannes Gütschow & David N. Bresch & Kerry Emanuel & Katja Frieler, 2021. "Double benefit of limiting global warming for tropical cyclone exposure," Nature Climate Change, Nature, vol. 11(10), pages 861-866, October.
    3. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    5. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    3. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    4. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    5. Stødle, Kaia & Metcalfe, Caroline A. & Brunner, Logan G. & Saliani, Julian N. & Flage, Roger & Guikema, Seth D., 2021. "Dependent infrastructure system modeling: A case study of the St. Kitts power and water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Seth Guikema, 2020. "Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1117-1123, June.
    7. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    8. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Bi, Wenzhe & Tian, Li & Li, Chao & Ma, Zhen & Pan, Haiyang, 2023. "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    11. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    12. Jin Tian & Yue Li, 2014. "System dynamics assessment of mitigation strategies for power distribution poles subjected to hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1263-1285, January.
    13. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
    14. Jasiūnas, Justinas & Heikkinen, Tatu & Lund, Peter D. & Láng-Ritter, Ilona, 2023. "Resilience of electric grid to extreme wind: Considering local details at national scale," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.
    16. Wang, Shuliang & Hong, Liu & Chen, Xueguang, 2012. "Vulnerability analysis of interdependent infrastructure systems: A methodological framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3323-3335.
    17. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Sequential Hazards Resilience of Interdependent Infrastructure System: A Case Study of Greater Toronto Area Energy Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1141-1168, May.
    18. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Ma, Liyang & Christou, Vasileios & Bocchini, Paolo, 2022. "Framework for probabilistic simulation of power transmission network performance under hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Guikema, S.D. & Quiring, S.M., 2012. "Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 178-182.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:9:y:2024:i:5:d:10.1038_s41560-023-01434-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.