IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v9y2024i1d10.1038_s41560-023-01375-9.html
   My bibliography  Save this article

In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials

Author

Listed:
  • Zijian Cai

    (University of California Berkeley
    Lawrence Berkeley National Laboratory)

  • Bin Ouyang

    (Florida State University)

  • Han-Ming Hau

    (University of California Berkeley
    Lawrence Berkeley National Laboratory)

  • Tina Chen

    (University of California Berkeley
    Lawrence Berkeley National Laboratory)

  • Raynald Giovine

    (University of California Santa Barbara
    University of California Santa Barbara)

  • Krishna Prasad Koirala

    (Pacific Northwest National Laboratory)

  • Linze Li

    (Pacific Northwest National Laboratory)

  • Huiwen Ji

    (University of Utah)

  • Yang Ha

    (Lawrence Berkeley National Laboratory)

  • Yingzhi Sun

    (University of California Berkeley
    Lawrence Berkeley National Laboratory)

  • Jianping Huang

    (Lawrence Berkeley National Laboratory)

  • Yu Chen

    (University of California Berkeley
    Lawrence Berkeley National Laboratory)

  • Vincent Wu

    (University of California Santa Barbara
    University of California Santa Barbara)

  • Wanli Yang

    (Lawrence Berkeley National Laboratory)

  • Chongmin Wang

    (Pacific Northwest National Laboratory)

  • Raphaële J. Clément

    (University of California Santa Barbara
    University of California Santa Barbara)

  • Zhengyan Lun

    (University of California Berkeley
    Lawrence Berkeley National Laboratory
    University of Chinese Academy of Sciences)

  • Gerbrand Ceder

    (University of California Berkeley
    Lawrence Berkeley National Laboratory)

Abstract

Earth-abundant cathode materials are urgently needed to enable scaling of the Li-ion industry to multiply terawatt hours of annual production, necessitating reconsideration of how good cathode materials can be obtained. Irreversible transition metal migration and phase transformations in Li-ion cathodes are typically believed to be detrimental because they may trigger voltage hysteresis, poor kinetics and capacity degradation. Here we challenge this conventional consensus by reporting an unusual phase transformation from disordered Li- and Mn-rich rock salts to a new phase (named δ), which displays partial spinel-like ordering with short coherence length and exhibits high energy density and rate capability. Unlike other Mn-based cathodes, the δ phase exhibits almost no voltage fade upon cycling. We identify the driving force and kinetics of this in situ cathode formation and establish design guidelines for Li- and Mn-rich compositions that combine high energy density, high rate capability and good cyclability, thereby enabling Mn-based energy storage.

Suggested Citation

  • Zijian Cai & Bin Ouyang & Han-Ming Hau & Tina Chen & Raynald Giovine & Krishna Prasad Koirala & Linze Li & Huiwen Ji & Yang Ha & Yingzhi Sun & Jianping Huang & Yu Chen & Vincent Wu & Wanli Yang & Chon, 2024. "In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials," Nature Energy, Nature, vol. 9(1), pages 27-36, January.
  • Handle: RePEc:nat:natene:v:9:y:2024:i:1:d:10.1038_s41560-023-01375-9
    DOI: 10.1038/s41560-023-01375-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01375-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01375-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiwen Ji & Jinpeng Wu & Zijian Cai & Jue Liu & Deok-Hwang Kwon & Hyunchul Kim & Alexander Urban & Joseph K. Papp & Emily Foley & Yaosen Tian & Mahalingam Balasubramanian & Haegyeom Kim & Raphaële J. , 2020. "Ultrahigh power and energy density in partially ordered lithium-ion cathode materials," Nature Energy, Nature, vol. 5(3), pages 213-221, March.
    2. Gaurav Assat & Jean-Marie Tarascon, 2018. "Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries," Nature Energy, Nature, vol. 3(5), pages 373-386, May.
    3. Weibo Hua & Suning Wang & Michael Knapp & Steven J. Leake & Anatoliy Senyshyn & Carsten Richter & Murat Yavuz & Joachim R. Binder & Clare P. Grey & Helmut Ehrenberg & Sylvio Indris & Björn Schwarz, 2019. "Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Huiwen Ji & Alexander Urban & Daniil A. Kitchaev & Deok-Hwang Kwon & Nongnuch Artrith & Colin Ophus & Wenxuan Huang & Zijian Cai & Tan Shi & Jae Chul Kim & Haegyeom Kim & Gerbrand Ceder, 2019. "Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    11. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Tianwei Cui & Jialiang Xu & Xin Wang & Longxiang Liu & Yuxuan Xiang & Hong Zhu & Xiang Li & Yongzhu Fu, 2024. "Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Shunsuke Sasaki & Souvik Giri & Simon J. Cassidy & Sunita Dey & Maria Batuk & Daphne Vandemeulebroucke & Giannantonio Cibin & Ronald I. Smith & Philip Holdship & Clare P. Grey & Joke Hadermann & Simon, 2023. "Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Yuta Yasui & Masataka Tansho & Kotaro Fujii & Yuichi Sakuda & Atsushi Goto & Shinobu Ohki & Yuuki Mogami & Takahiro Iijima & Shintaro Kobayashi & Shogo Kawaguchi & Keiichi Osaka & Kazutaka Ikeda & Tos, 2023. "Hidden chemical order in disordered Ba7Nb4MoO20 revealed by resonant X-ray diffraction and solid-state NMR," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Paul-Martin Luc & Simon Bauer & Julia Kowal, 2022. "Reproducible Production of Lithium-Ion Coin Cells," Energies, MDPI, vol. 15(21), pages 1-16, October.
    18. Tongtong Shang & Dongdong Xiao & Fanqi Meng & Xiaohui Rong & Ang Gao & Ting Lin & Zhexin Tang & Xiaozhi Liu & Xinyan Li & Qinghua Zhang & Yuren Wen & Ruijuan Xiao & Xuefeng Wang & Dong Su & Yong-Sheng, 2022. "Real-space measurement of orbital electron populations for Li1-xCoO2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Ashraf Abdel-Ghany & Ahmed M. Hashem & Alain Mauger & Christian M. Julien, 2020. "Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading," Energies, MDPI, vol. 13(13), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:9:y:2024:i:1:d:10.1038_s41560-023-01375-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.