IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v9y2024i10d10.1038_s41560-024-01604-9.html
   My bibliography  Save this article

Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation

Author

Listed:
  • Yuanyuan Zhou

    (Chongqing University)

  • Wei Yuan

    (Chongqing University)

  • Mengting Li

    (Chongqing University)

  • Zhenyang Xie

    (Chongqing University)

  • Xiaoyun Song

    (Chongqing University)

  • Yang Yang

    (Loughborough University)

  • Jian Wang

    (Chongqing University)

  • Li Li

    (Chongqing University)

  • Wei Ding

    (Chongqing University)

  • Wen-Feng Lin

    (Loughborough University)

  • Zidong Wei

    (Chongqing University)

Abstract

The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoOx/MoOx heterojunction (C-MoOx/MoOx) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (VRHE) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mgNi−1 and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle.

Suggested Citation

  • Yuanyuan Zhou & Wei Yuan & Mengting Li & Zhenyang Xie & Xiaoyun Song & Yang Yang & Jian Wang & Li Li & Wei Ding & Wen-Feng Lin & Zidong Wei, 2024. "Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation," Nature Energy, Nature, vol. 9(10), pages 1297-1309, October.
  • Handle: RePEc:nat:natene:v:9:y:2024:i:10:d:10.1038_s41560-024-01604-9
    DOI: 10.1038/s41560-024-01604-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-024-01604-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-024-01604-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuzhan Song & Wei Li & Jiaqi Yang & Guanqun Han & Peilin Liao & Yujie Sun, 2018. "Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Xiaoyu Tian & Renjie Ren & Fengyuan Wei & Jiajing Pei & Zhongbin Zhuang & Lin Zhuang & Wenchao Sheng, 2024. "Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Van Men Truong & Julian Richard Tolchard & Jørgen Svendby & Maidhily Manikandan & Hamish A. Miller & Svein Sunde & Hsiharng Yang & Dario R. Dekel & Alejandro Oyarce Barnett, 2020. "Platinum and Platinum Group Metal-Free Catalysts for Anion Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(3), pages 1-21, January.
    4. Zhongbin Zhuang & Stephen A. Giles & Jie Zheng & Glen R. Jenness & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2016. "Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Guodong Li & Guanqun Han & Lu Wang & Xiaoyu Cui & Nicole K. Moehring & Piran R. Kidambi & De-en Jiang & Yujie Sun, 2023. "Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Libo Zhu & Jian Huang & Ge Meng & Tiantian Wu & Chang Chen & Han Tian & Yafeng Chen & Fantao Kong & Ziwei Chang & Xiangzhi Cui & Jianlin Shi, 2023. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    6. Saideep Singh & Rishi Verma & Nidhi Kaul & Jacinto Sa & Ajinkya Punjal & Shriganesh Prabhu & Vivek Polshettiwar, 2023. "Surface plasmon-enhanced photo-driven CO2 hydrogenation by hydroxy-terminated nickel nitride nanosheets," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Ramesh K. Singh & John C. Douglin & Lanjie Jiang & Karam Yassin & Simon Brandon & Dario R. Dekel, 2023. "CoO x -Fe 3 O 4 /N-rGO Oxygen Reduction Catalyst for Anion-Exchange Membrane Fuel Cells," Energies, MDPI, vol. 16(8), pages 1-18, April.
    8. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Xiaoyu Tian & Renjie Ren & Fengyuan Wei & Jiajing Pei & Zhongbin Zhuang & Lin Zhuang & Wenchao Sheng, 2024. "Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Zhengxin Zhu & Zaichun Liu & Yichen Yin & Yuan Yuan & Yahan Meng & Taoli Jiang & Qia Peng & Weiping Wang & Wei Chen, 2022. "Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:9:y:2024:i:10:d:10.1038_s41560-024-01604-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.