IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220326748.html
   My bibliography  Save this article

Solar power windows: Connecting scientific advances to market signals

Author

Listed:
  • Needell, David R.
  • Phelan, Megan E.
  • Hartlove, Jason T.
  • Atwater, Harry A.

Abstract

Recent materials advances have enabled researchers to envision and develop highly efficient, partially transparent photovoltaic (PV) prototypes, exposing a potentially large and untapped market for solar energy: building integrated (BI) solar powered windows. In this perspective, we assess the case for market deployment of BIPV windows, specifically intended for commercial U.S. high-rise buildings. Research and development on solar powered windows has been predicated on the hypothesis that sunlight-to-electrical power conversion efficiency (PCE) and device cost per unit area are the key figures of merit that might drive market adoption. Here we investigate the market landscape and desirability for solar powered windows by identifying and evaluating the customer needs for the commercial high-rise building window market. In the course of this assessment, we performed 150 interviews with experts across the value chain for commercial windows. We found that the market forces are complicated by a misalignment of incentives between the end users of BIPV windows and the key decision makers for building projects that could incorporate this technology. Our assessment leads us to frame new figures of merit for BIPV windows that address the underlying needs of prospective customers as well as technical metrics for energy generation. We finally discuss one possible direction for BIPV window technology in which photovoltaics are integrated with switchable windows. Here, the integrated PV converts visible and infrared light transmission into useable electricity enabling standalone, self-powered active windows that can potentially address market needs for smart windows, thereby enabling a pathway for BIPV window deployment.

Suggested Citation

  • Needell, David R. & Phelan, Megan E. & Hartlove, Jason T. & Atwater, Harry A., 2021. "Solar power windows: Connecting scientific advances to market signals," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326748
    DOI: 10.1016/j.energy.2020.119567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2017. "Solar coolfacades: Framework for the integration of solar cooling technologies in the building envelope," Energy, Elsevier, vol. 137(C), pages 353-368.
    2. Christopher J. Traverse & Richa Pandey & Miles C. Barr & Richard R. Lunt, 2017. "Emergence of highly transparent photovoltaics for distributed applications," Nature Energy, Nature, vol. 2(11), pages 849-860, November.
    3. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    4. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    5. Curtius, Hans Christoph, 2018. "The adoption of building-integrated photovoltaics: barriers and facilitators," Renewable Energy, Elsevier, vol. 126(C), pages 783-790.
    6. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    7. Shirazi, Ali Mohammad & Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, Elsevier, vol. 143(C), pages 1235-1246.
    8. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    9. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    10. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe T. Cirella & Alessio Russo & Federico Benassi & Ernest Czermański & Anatoliy G. Goncharuk & Aneta Oniszczuk-Jastrzabek, 2021. "Energy Re-Shift for an Urbanizing World," Energies, MDPI, vol. 14(17), pages 1-22, September.
    2. Liang, Shen & Zheng, Hongfei & Liu, Shuli & Ma, Xinglong, 2022. "Optical design and validation of a solar concentrating photovoltaic-thermal (CPV-T) module for building louvers," Energy, Elsevier, vol. 239(PC).
    3. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).
    4. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    5. Xie, Xing & Xu, Bin & Fei, Yue & Chen, Xing-ni & Pei, Gang & Ji, Jie, 2024. "Passive energy-saving design strategy and realization on high window-wall ratio buildings in subtropical regions," Renewable Energy, Elsevier, vol. 229(C).
    6. Qiu, Changyu & Yang, Hongxing, 2022. "Dynamic coupling of a heat transfer model and whole building simulation for a novel cadmium telluride-based vacuum photovoltaic glazing," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curtius, Hans Christoph, 2018. "The adoption of building-integrated photovoltaics: barriers and facilitators," Renewable Energy, Elsevier, vol. 126(C), pages 783-790.
    2. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    3. Ahmad I. Elshamy & Engy Elshazly & Olugbenga Timo Oladinrin & Muhammad Qasim Rana & Rasha Said Abd el-Lateef & Seif Tarek El-Badry & Mahmoud Elthakaby & Ahmed M. R. Elbaz & Khaled Dewidar & Iman El-Ma, 2022. "Challenges and Opportunities for Integrating RE Systems in Egyptian Building Stocks," Energies, MDPI, vol. 15(23), pages 1-23, November.
    4. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    5. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    6. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.
    7. Yingying Zhou & Christiane Margerita Herr, 2023. "A Review of Advanced Façade System Technologies to Support Net-Zero Carbon High-Rise Building Design in Subtropical China," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    8. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    9. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    10. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    11. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    12. Curtius, Hans Christoph & Hille, Stefanie Lena & Berger, Christian & Hahnel, Ulf Joachim Jonas & Wüstenhagen, Rolf, 2018. "Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms," Energy Policy, Elsevier, vol. 118(C), pages 596-602.
    13. Azam Ghezelbash & Vahid Khaligh & Seyed Hamed Fahimifard & J. Jay Liu, 2023. "A Comparative Perspective of the Effects of CO 2 and Non-CO 2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment," Energies, MDPI, vol. 16(7), pages 1-20, March.
    14. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    15. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    16. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2020. "Conveyance, envy, and homeowner choice of appliances," Energy Economics, Elsevier, vol. 89(C).
    17. Martin, Ralf, 2009. "Why is the US so energy intensive? Evidence from US multinationals in the UK," LSE Research Online Documents on Economics 28703, London School of Economics and Political Science, LSE Library.
    18. Sanstad, Alan H. & DeCanio, Stephen J. & Boyd, Gale A. & Koomey, Jonathan G., 2001. "Estimating bounds on the economy-wide effects of the CEF policy scenarios," Energy Policy, Elsevier, vol. 29(14), pages 1299-1311, November.
    19. Mr. Jon Strand, 2007. "Energy Efficiency and Renewable Energy Supply for the G-7 Countries, with Emphasis on Germany," IMF Working Papers 2007/299, International Monetary Fund.
    20. Arlan Brucal & Michael Roberts, 2015. "Can Energy Efficiency Standards Reduce Prices and Improve Quality? Evidence from the US Clothes Washer Market," Working Papers 2015-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.