IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07557-4.html
   My bibliography  Save this article

Degrading permafrost puts Arctic infrastructure at risk by mid-century

Author

Listed:
  • Jan Hjort

    (University of Oulu)

  • Olli Karjalainen

    (University of Oulu)

  • Juha Aalto

    (University of Helsinki
    Weather and Climate Change Impact Research)

  • Sebastian Westermann

    (University of Oslo)

  • Vladimir E. Romanovsky

    (University of Alaska Fairbanks
    Siberian Branch of the Russian Academy of Science)

  • Frederick E. Nelson

    (Michigan State University
    Northern Michigan University)

  • Bernd Etzelmüller

    (University of Oslo)

  • Miska Luoto

    (University of Helsinki)

Abstract

Degradation of near-surface permafrost can pose a serious threat to the utilization of natural resources, and to the sustainable development of Arctic communities. Here we identify at unprecedentedly high spatial resolution infrastructure hazard areas in the Northern Hemisphere’s permafrost regions under projected climatic changes and quantify fundamental engineering structures at risk by 2050. We show that nearly four million people and 70% of current infrastructure in the permafrost domain are in areas with high potential for thaw of near-surface permafrost. Our results demonstrate that one-third of pan-Arctic infrastructure and 45% of the hydrocarbon extraction fields in the Russian Arctic are in regions where thaw-related ground instability can cause severe damage to the built environment. Alarmingly, these figures are not reduced substantially even if the climate change targets of the Paris Agreement are reached.

Suggested Citation

  • Jan Hjort & Olli Karjalainen & Juha Aalto & Sebastian Westermann & Vladimir E. Romanovsky & Frederick E. Nelson & Bernd Etzelmüller & Miska Luoto, 2018. "Degrading permafrost puts Arctic infrastructure at risk by mid-century," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07557-4
    DOI: 10.1038/s41467-018-07557-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07557-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07557-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladislav Isaev & Arata Kioka & Pavel Kotov & Dmitrii O. Sergeev & Alexandra Uvarova & Andrey Koshurnikov & Oleg Komarov, 2022. "Multi-Parameter Protocol for Geocryological Test Site: A Case Study Applied for the European North of Russia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    3. N. A. Serova & V. A. Serova, 2021. "Transport Infrastructure of the Russian Arctic: Specifics Features and Development Prospects," Studies on Russian Economic Development, Springer, vol. 32(2), pages 214-220, March.
    4. Frederique Bordignon, 2021. "A scientometric review of permafrost research based on textual analysis (1948–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 417-436, January.
    5. B. N. Porfiriev & D. O. Eliseev, 2023. "Scenario Forecasts of Expected Damage from Permafrost Degradation: Regional and Industry Issues," Studies on Russian Economic Development, Springer, vol. 34(5), pages 651-659, October.
    6. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Moritz Langer & Thomas Schneider Deimling & Sebastian Westermann & Rebecca Rolph & Ralph Rutte & Sofia Antonova & Volker Rachold & Michael Schultz & Alexander Oehme & Guido Grosse, 2023. "Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    9. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    10. Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Jin, Long & Wang, Chong & Li, Guanji, 2023. "Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions," Energy, Elsevier, vol. 283(C).
    11. Jörg Schwinger & Ali Asaadi & Nadine Goris & Hanna Lee, 2022. "Possibility for strong northern hemisphere high-latitude cooling under negative emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Nathan S. Debortoli & Tristan D. Pearce & James D. Ford, 2023. "Estimating Future Costs for Infrastructure in the Proposed Canadian Northern Corridor at Risk From Climate Change," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 16(6), March.
    13. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    14. Alyona A. Shestakova & Alexander N. Fedorov & Yaroslav I. Torgovkin & Pavel Y. Konstantinov & Nikolay F. Vasyliev & Svetlana V. Kalinicheva & Vera V. Samsonova & Tetsuya Hiyama & Yoshihiro Iijima & Ho, 2021. "Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS," Land, MDPI, vol. 10(5), pages 1-18, April.
    15. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    16. Tom Spencer & Alexandre K. Magnan & Simon Donner & Matthias Garschagen & James Ford & Virginie K. E. Duvat & Colette C. C. Wabnitz, 2024. "Habitability of low-lying socio-ecological systems under a changing climate," Climatic Change, Springer, vol. 177(1), pages 1-19, January.
    17. Groom, Ben & Linsenmeier, Manuel & Roth, Sefi, 2023. "Some like it cold: Heterogeneity in the temperature-economy relationships of Europe," SocArXiv tcnad, Center for Open Science.
    18. Tatiana S. Degai & Natalia Khortseva & Maria Monakhova & Andrey N. Petrov, 2021. "Municipal Programs and Sustainable Development in Russian Northern Cities: Case Studies of Murmansk and Magadan," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    19. Pei, Wansheng & Du, Shuai & Zhang, Mingyi & Zhou, Yanqiao & Ji, Yanjun, 2024. "Effect of evaporator curvature on the local non-equilibrium heat regulation in two-phase closed thermosyphon embankment in permafrost regions," Energy, Elsevier, vol. 301(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07557-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.