IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00180-9.html
   My bibliography  Save this article

Sparse orthogonal population representation of spatial context in the retrosplenial cortex

Author

Listed:
  • Dun Mao

    (Neuro-Electronics Research Flanders
    University of Lethbridge)

  • Steffen Kandler

    (Neuro-Electronics Research Flanders
    Imec)

  • Bruce L. McNaughton

    (Neuro-Electronics Research Flanders
    University of Lethbridge)

  • Vincent Bonin

    (Neuro-Electronics Research Flanders
    Imec
    VIB
    Department of Biology, KU Leuven)

Abstract

Sparse orthogonal coding is a key feature of hippocampal neural activity, which is believed to increase episodic memory capacity and to assist in navigation. Some retrosplenial cortex (RSC) neurons convey distributed spatial and navigational signals, but place-field representations such as observed in the hippocampus have not been reported. Combining cellular Ca2+ imaging in RSC of mice with a head-fixed locomotion assay, we identified a population of RSC neurons, located predominantly in superficial layers, whose ensemble activity closely resembles that of hippocampal CA1 place cells during the same task. Like CA1 place cells, these RSC neurons fire in sequences during movement, and show narrowly tuned firing fields that form a sparse, orthogonal code correlated with location. RSC ‘place’ cell activity is robust to environmental manipulations, showing partial remapping similar to that observed in CA1. This population code for spatial context may assist the RSC in its role in memory and/or navigation.

Suggested Citation

  • Dun Mao & Steffen Kandler & Bruce L. McNaughton & Vincent Bonin, 2017. "Sparse orthogonal population representation of spatial context in the retrosplenial cortex," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00180-9
    DOI: 10.1038/s41467-017-00180-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00180-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00180-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Xu Han & Ben Vermaercke & Vincent Bonin, 2022. "Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. HaoRan Chang & Ingrid M. Esteves & Adam R. Neumann & Majid H. Mohajerani & Bruce L. McNaughton, 2023. "Cortical reactivation of spatial and non-spatial features coordinates with hippocampus to form a memory dialogue," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Weilun Sun & Ilseob Choi & Stoyan Stoyanov & Oleg Senkov & Evgeni Ponimaskin & York Winter & Janelle M. P. Pakan & Alexander Dityatev, 2021. "Context value updating and multidimensional neuronal encoding in the retrosplenial cortex," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00180-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.