IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2498.html
   My bibliography  Save this article

Electrical control of neutral and charged excitons in a monolayer semiconductor

Author

Listed:
  • Jason S. Ross

    (University of Washington)

  • Sanfeng Wu

    (University of Washington)

  • Hongyi Yu

    (University of Hong Kong)

  • Nirmal J. Ghimire

    (University of Tennessee
    Oak Ridge National Laboratory)

  • Aaron M. Jones

    (University of Washington)

  • Grant Aivazian

    (University of Washington)

  • Jiaqiang Yan

    (Oak Ridge National Laboratory
    University of Tennessee)

  • David G. Mandrus

    (University of Tennessee
    Oak Ridge National Laboratory
    University of Tennessee)

  • Di Xiao

    (Carnegie Mellon University)

  • Wang Yao

    (University of Hong Kong)

  • Xiaodong Xu

    (University of Washington
    University of Washington)

Abstract

Monolayer group-VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts), which have thus far been challenging to generate and control in the ultimate two-dimensional limit. Utilizing high-quality monolayer molybdenum diselenide, we report the unambiguous observation and electrostatic tunability of charging effects in positively charged (X+), neutral (Xo) and negatively charged (X−) excitons in field-effect transistors via photoluminescence. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, whereas the linewidth is narrow (5 meV) at temperatures

Suggested Citation

  • Jason S. Ross & Sanfeng Wu & Hongyi Yu & Nirmal J. Ghimire & Aaron M. Jones & Grant Aivazian & Jiaqiang Yan & David G. Mandrus & Di Xiao & Wang Yao & Xiaodong Xu, 2013. "Electrical control of neutral and charged excitons in a monolayer semiconductor," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2498
    DOI: 10.1038/ncomms2498
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2498
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Syperek & Raul Stühler & Armando Consiglio & Paweł Holewa & Paweł Wyborski & Łukasz Dusanowski & Felix Reis & Sven Höfling & Ronny Thomale & Werner Hanke & Ralph Claessen & Domenico Sante & Chr, 2022. "Observation of room temperature excitons in an atomically thin topological insulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Hugo Henck & Diego Mauro & Daniil Domaretskiy & Marc Philippi & Shahriar Memaran & Wenkai Zheng & Zhengguang Lu & Dmitry Shcherbakov & Chun Ning Lau & Dmitry Smirnov & Luis Balicas & Kenji Watanabe & , 2022. "Light sources with bias tunable spectrum based on van der Waals interface transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Ruishi Qi & Andrew Y. Joe & Zuocheng Zhang & Yongxin Zeng & Tiancheng Zheng & Qixin Feng & Jingxu Xie & Emma Regan & Zheyu Lu & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Michael F. Cromm, 2023. "Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Hyeongwoo Lee & Yeonjeong Koo & Shailabh Kumar & Yunjo Jeong & Dong Gwon Heo & Soo Ho Choi & Huitae Joo & Mingu Kang & Radwanul Hasan Siddique & Ki Kang Kim & Hong Seok Lee & Sangmin An & Hyuck Choo &, 2023. "All-optical control of high-purity trions in nanoscale waveguide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Artem Sinelnik & Shiu Hei Lam & Filippo Coviello & Sebastian Klimmer & Giuseppe Valle & Duk-Yong Choi & Thomas Pertsch & Giancarlo Soavi & Isabelle Staude, 2024. "Ultrafast all-optical second harmonic wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Jack B. Muir & Jesper Levinsen & Stuart K. Earl & Mitchell A. Conway & Jared H. Cole & Matthias Wurdack & Rishabh Mishra & David J. Ing & Eliezer Estrecho & Yuerui Lu & Dmitry K. Efimkin & Jonathan O., 2022. "Interactions between Fermi polarons in monolayer WS2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Farsane Tabataba-Vakili & Huy P. G. Nguyen & Anna Rupp & Kseniia Mosina & Anastasios Papavasileiou & Kenji Watanabe & Takashi Taniguchi & Patrick Maletinsky & Mikhail M. Glazov & Zdenek Sofer & Anvar , 2024. "Doping-control of excitons and magnetism in few-layer CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Hyeongwoo Lee & Sujeong Kim & Seonhye Eom & Gangseon Ji & Soo Ho Choi & Huitae Joo & Jinhyuk Bae & Ki Kang Kim & Vasily Kravtsov & Hyeong-Ryeol Park & Kyoung-Duck Park, 2024. "Quantum tunneling high-speed nano-excitonic modulator," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Erfu Liu & Jeremiah Baren & Zhengguang Lu & Takashi Taniguchi & Kenji Watanabe & Dmitry Smirnov & Yia-Chung Chang & Chun Hung Lui, 2021. "Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Trond I. Andersen & Ryan J. Gelly & Giovanni Scuri & Bo L. Dwyer & Dominik S. Wild & Rivka Bekenstein & Andrey Sushko & Jiho Sung & You Zhou & Alexander A. Zibrov & Xiaoling Liu & Andrew Y. Joe & Kenj, 2022. "Beam steering at the nanosecond time scale with an atomically thin reflector," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Kai-Qiang Lin & Jonas D. Ziegler & Marina A. Semina & Javid V. Mamedov & Kenji Watanabe & Takashi Taniguchi & Sebastian Bange & Alexey Chernikov & Mikhail M. Glazov & John M. Lupton, 2022. "High-lying valley-polarized trions in 2D semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Jed Kistner-Morris & Ao Shi & Erfu Liu & Trevor Arp & Farima Farahmand & Takashi Taniguchi & Kenji Watanabe & Vivek Aji & Chun Hung Lui & Nathaniel Gabor, 2024. "Electric-field tunable Type-I to Type-II band alignment transition in MoSe2/WS2 heterobilayers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Raul Perea-Causin & Samuel Brem & Fabian Buchner & Yao Lu & Kenji Watanabe & Takashi Taniguchi & John M. Lupton & Kai-Qiang Lin & Ermin Malic, 2024. "Electrically tunable layer-hybridized trions in doped WSe2 bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Guangpeng Zhu & Lan Zhang & Wenfei Li & Xiuqi Shi & Zhen Zou & Qianqian Guo & Xiang Li & Weigao Xu & Jiansheng Jie & Tao Wang & Wei Du & Qihua Xiong, 2023. "Room-temperature high-speed electrical modulation of excitonic distribution in a monolayer semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.