IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48321-1.html
   My bibliography  Save this article

Electric-field tunable Type-I to Type-II band alignment transition in MoSe2/WS2 heterobilayers

Author

Listed:
  • Jed Kistner-Morris

    (University of California)

  • Ao Shi

    (University of California)

  • Erfu Liu

    (University of California
    Nanjing University)

  • Trevor Arp

    (University of California
    University of California)

  • Farima Farahmand

    (University of California)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Vivek Aji

    (University of California)

  • Chun Hung Lui

    (University of California)

  • Nathaniel Gabor

    (University of California)

Abstract

Semiconductor heterojunctions are ubiquitous components of modern electronics. Their properties depend crucially on the band alignment at the interface, which may exhibit straddling gap (type-I), staggered gap (type-II) or broken gap (type-III). The distinct characteristics and applications associated with each alignment make it highly desirable to switch between them within a single material. Here we demonstrate an electrically tunable transition between type-I and type-II band alignments in MoSe2/WS2 heterobilayers by investigating their luminescence and photocurrent characteristics. In their intrinsic state, these heterobilayers exhibit a type-I band alignment, resulting in the dominant intralayer exciton luminescence from MoSe2. However, the application of a strong interlayer electric field induces a transition to a type-II band alignment, leading to pronounced interlayer exciton luminescence. Furthermore, the formation of the interlayer exciton state traps free carriers at the interface, leading to the suppression of interlayer photocurrent and highly nonlinear photocurrent-voltage characteristics. This breakthrough in electrical band alignment control, interlayer exciton manipulation, and carrier trapping heralds a new era of versatile optical and (opto)electronic devices composed of van der Waals heterostructures.

Suggested Citation

  • Jed Kistner-Morris & Ao Shi & Erfu Liu & Trevor Arp & Farima Farahmand & Takashi Taniguchi & Kenji Watanabe & Vivek Aji & Chun Hung Lui & Nathaniel Gabor, 2024. "Electric-field tunable Type-I to Type-II band alignment transition in MoSe2/WS2 heterobilayers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48321-1
    DOI: 10.1038/s41467-024-48321-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48321-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48321-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    2. Ting Cao & Gang Wang & Wenpeng Han & Huiqi Ye & Chuanrui Zhu & Junren Shi & Qian Niu & Pingheng Tan & Enge Wang & Baoli Liu & Ji Feng, 2012. "Valley-selective circular dichroism of monolayer molybdenum disulphide," Nature Communications, Nature, vol. 3(1), pages 1-5, January.
    3. Jason S. Ross & Sanfeng Wu & Hongyi Yu & Nirmal J. Ghimire & Aaron M. Jones & Grant Aivazian & Jiaqiang Yan & David G. Mandrus & Di Xiao & Wang Yao & Xiaodong Xu, 2013. "Electrical control of neutral and charged excitons in a monolayer semiconductor," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Syperek & Raul Stühler & Armando Consiglio & Paweł Holewa & Paweł Wyborski & Łukasz Dusanowski & Felix Reis & Sven Höfling & Ronny Thomale & Werner Hanke & Ralph Claessen & Domenico Sante & Chr, 2022. "Observation of room temperature excitons in an atomically thin topological insulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Zhiwen Zhou & E. A. Szwed & D. J. Choksy & L. H. Fowler-Gerace & L. V. Butov, 2024. "Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Hyeongwoo Lee & Sujeong Kim & Seonhye Eom & Gangseon Ji & Soo Ho Choi & Huitae Joo & Jinhyuk Bae & Ki Kang Kim & Vasily Kravtsov & Hyeong-Ryeol Park & Kyoung-Duck Park, 2024. "Quantum tunneling high-speed nano-excitonic modulator," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Cosme G. Ayani & Michele Pisarra & Iván M. Ibarburu & Clara Rebanal & Manuela Garnica & Fabián Calleja & Fernando Martín & Amadeo L. Vázquez de Parga, 2024. "Electron delocalization in a 2D Mott insulator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Qiang Gao & Jin Mo Bok & Ping Ai & Jing Liu & Hongtao Yan & Xiangyu Luo & Yongqing Cai & Cong Li & Yang Wang & Chaohui Yin & Hao Chen & Genda Gu & Fengfeng Zhang & Feng Yang & Shenjin Zhang & Qinjun P, 2024. "ARPES detection of superconducting gap sign in unconventional superconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Tobias Bucher & Zlata Fedorova & Mostafa Abasifard & Rajeshkumar Mupparapu & Matthias J. Wurdack & Emad Najafidehaghani & Ziyang Gan & Heiko Knopf & Antony George & Falk Eilenberger & Thomas Pertsch &, 2024. "Influence of resonant plasmonic nanoparticles on optically accessing the valley degree of freedom in 2D semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Yu Ji & Guang-Ping Hao & Yong-Tao Tan & Wenqi Xiong & Yu Liu & Wenzhe Zhou & Dai-Ming Tang & Renzhi Ma & Shengjun Yuan & Takayoshi Sasaki & Marcelo Lozada-Hidalgo & Andre K. Geim & Pengzhan Sun, 2024. "High proton conductivity through angstrom-porous titania," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    17. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Raul Perea-Causin & Samuel Brem & Fabian Buchner & Yao Lu & Kenji Watanabe & Takashi Taniguchi & John M. Lupton & Kai-Qiang Lin & Ermin Malic, 2024. "Electrically tunable layer-hybridized trions in doped WSe2 bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Boxuan Yang & Bibek Bhujel & Daniel G. Chica & Evan J. Telford & Xavier Roy & Fatima Ibrahim & Mairbek Chshiev & Maxen Cosset-Chéneau & Bart J. van Wees, 2024. "Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48321-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.