IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55299-3.html
   My bibliography  Save this article

Metal-oxide phase transition of platinum nanocatalyst below fuel cell open-circuit voltage

Author

Listed:
  • Carlos A. Campos-Roldán

    (34095)

  • Amir Gasmi

    (34095)

  • Meryem Ennaji

    (34095)

  • Morgane Stodel

    (31062)

  • Isaac Martens

    (38043)

  • Jean-Sébastien Filhol

    (34095)

  • Pierre-Yves Blanchard

    (34095)

  • Sara Cavaliere

    (34095)

  • Deborah Jones

    (34095)

  • Jakub Drnec

    (38043)

  • Raphaël Chattot

    (34095)

Abstract

The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering. The onset potential for phase transition of the nanoparticles surface from metallic to amorphous electrochemical oxide is observed far below previously reported values, and most importantly, below the open-circuit potential of PEMFC cathode. Such phase transition is shown to impact PEMFC performance and its role on Pt transient dissolution is verified by electrochemical on-line inductively coupled plasma mass spectrometry. By further demonstrating and resolving the limitations of currently employed accelerated stress test protocols in the light of metal-oxide phase transitions kinetics, this picture of Pt oxidation enables new mitigation strategies against PEMFC degradation.

Suggested Citation

  • Carlos A. Campos-Roldán & Amir Gasmi & Meryem Ennaji & Morgane Stodel & Isaac Martens & Jean-Sébastien Filhol & Pierre-Yves Blanchard & Sara Cavaliere & Deborah Jones & Jakub Drnec & Raphaël Chattot, 2025. "Metal-oxide phase transition of platinum nanocatalyst below fuel cell open-circuit voltage," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55299-3
    DOI: 10.1038/s41467-024-55299-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55299-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55299-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rubén Rizo & Julia Fernández-Vidal & Laurence J. Hardwick & Gary A. Attard & Francisco J. Vidal-Iglesias & Victor Climent & Enrique Herrero & Juan M. Feliu, 2022. "Investigating the presence of adsorbed species on Pt steps at low potentials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Laetitia Dubau & Luis Castanheira & Frédéric Maillard & Marian Chatenet & Olivier Lottin & Gaël Maranzana & Jérôme Dillet & Adrien Lamibrac & Jean‐Christophe Perrin & Eddy Moukheiber & Assma ElKaddour, 2014. "A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 540-560, November.
    3. Rubén Rizo & Julia Fernández-Vidal & Laurence J. Hardwick & Gary A. Attard & Francisco J. Vidal-Iglesias & Victor Climent & Enrique Herrero & Juan M. Feliu, 2022. "Author Correction: Investigating the presence of adsorbed species on Pt steps at low potentials," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedikt Axel Brandes & Yogeshwaran Krishnan & Fabian Luca Buchauer & Heine Anton Hansen & Johan Hjelm, 2024. "Unifying the ORR and OER with surface oxygen and extracting their intrinsic activities on platinum," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hao Dong & Ran Luo & Gong Zhang & Lulu Li & Chaoxi Wang & Guodong Sun & Hongyi Wang & Jiachang Liu & Tuo Wang & Zhi-Jian Zhao & Peng Zhang & Jinlong Gong, 2025. "Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    4. Zhang, Lu & Liu, Jie & Du, Shaojie & Zhao, Chen, 2024. "Multiphase flow dynamics in metal foam proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 226(C).
    5. Ren, Peng & Meng, Yining & Pei, Pucheng & Fu, Xi & Chen, Dongfang & Li, Yuehua & Zhu, Zijing & Zhang, Lu & Wang, Mingkai, 2023. "Rapid synchronous state-of-health diagnosis of membrane electrode assemblies in fuel cell stacks," Applied Energy, Elsevier, vol. 330(PA).
    6. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    7. Kafetzis, A. & Ziogou, C. & Panopoulos, K.D. & Papadopoulou, S. & Seferlis, P. & Voutetakis, S., 2020. "Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    9. Culubret, S. & Rubio, M.A. & Sanchez, D.G. & Urquia, A., 2024. "Performance uniformity analysis in polymer electrolyte fuel cell using long-term dynamic simulation," Applied Energy, Elsevier, vol. 365(C).
    10. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).
    11. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Dacheng Zhang & Catherine Cadet & Nadia Yousfi-Steiner & Christophe Bérenguer, 2018. "Proton exchange membrane fuel cell remaining useful life prognostics considering degradation recovery phenomena," Journal of Risk and Reliability, , vol. 232(4), pages 415-424, August.
    13. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Giraud, Alain & Couderc, Pascal, 2019. "Fault diagnosis for fuel cell systems: A data-driven approach using high-precise voltage sensors," Renewable Energy, Elsevier, vol. 135(C), pages 1435-1444.
    14. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55299-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.