IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57111-2.html
   My bibliography  Save this article

Magnetic Bloch states at integer flux quanta induced by super-moiré potential in graphene aligned with twisted boron nitride

Author

Listed:
  • Yaqi Ma

    (The Hong Kong University of Science and Technology)

  • Meizhen Huang

    (The Hong Kong University of Science and Technology)

  • Xu Zhang

    (The University of Hong Kong
    University of Ghent)

  • Weixiong Hu

    (ShanghaiTech University)

  • Zishu Zhou

    (The Hong Kong University of Science and Technology)

  • Kai Feng

    (The University of Hong Kong)

  • Wenhui Li

    (ShanghaiTech University
    ShanghaiTech University)

  • Yong Chen

    (The Hong Kong University of Science and Technology)

  • Chenxuan Lou

    (The Hong Kong University of Science and Technology)

  • Weikang Zhang

    (The Hong Kong University of Science and Technology)

  • Haoxi Ji

    (The Hong Kong University of Science and Technology)

  • Yibo Wang

    (The Hong Kong University of Science and Technology)

  • Zefei Wu

    (The Hong Kong University of Science and Technology)

  • Xiaodong Cui

    (The University of Hong Kong)

  • Wang Yao

    (The University of Hong Kong)

  • Shichao Yan

    (ShanghaiTech University
    ShanghaiTech University)

  • Zi Yang Meng

    (The University of Hong Kong)

  • Ning Wang

    (The Hong Kong University of Science and Technology)

Abstract

Two-dimensional electron systems in both magnetic fields and periodic potentials are described by the Hofstadter butterfly, a fundamental problem of solid-state physics. While moiré systems provide a powerful method to realize this type of spectrum, previous experiments have been limited to fractional flux quanta regime, due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonstrate a super-moiré strategy to overcome this challenge. By aligning monolayer graphene (G) with 1.0° twisted hexagonal boron nitride (t-hBN), a 63.2 nm bichromatic G/t-hBN super-moiré is constructed, made possible by exploiting the electrostatic nature of t-hBN potential. Under magnetic field $$B$$ B , magnetic Bloch states at $$\phi /{\phi }_{0}=1-9$$ ϕ / ϕ 0 = 1 − 9 are achieved and observed as integer Brown-Zak oscillations, expanding the flux quanta from fractions to integers. Theoretical analysis reproduces these experimental findings. This work opens promising avenues to study unexplored Hofstadter butterfly, explore emergent topological order at integer flux quanta and engineer long-wavelength periodic modulations.

Suggested Citation

  • Yaqi Ma & Meizhen Huang & Xu Zhang & Weixiong Hu & Zishu Zhou & Kai Feng & Wenhui Li & Yong Chen & Chenxuan Lou & Weikang Zhang & Haoxi Ji & Yibo Wang & Zefei Wu & Xiaodong Cui & Wang Yao & Shichao Ya, 2025. "Magnetic Bloch states at integer flux quanta induced by super-moiré potential in graphene aligned with twisted boron nitride," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57111-2
    DOI: 10.1038/s41467-025-57111-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57111-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57111-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Mohit Kumar Jat & Priya Tiwari & Robin Bajaj & Ishita Shitut & Shinjan Mandal & Kenji Watanabe & Takashi Taniguchi & H. R. Krishnamurthy & Manish Jain & Aveek Bid, 2024. "Higher order gaps in the renormalized band structure of doubly aligned hBN/bilayer graphene moiré superlattice," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. A. Uri & S. Grover & Y. Cao & J. A. Crosse & K. Bagani & D. Rodan-Legrain & Y. Myasoedov & K. Watanabe & T. Taniguchi & P. Moon & M. Koshino & P. Jarillo-Herrero & E. Zeldov, 2020. "Mapping the twist-angle disorder and Landau levels in magic-angle graphene," Nature, Nature, vol. 581(7806), pages 47-52, May.
    5. L. A. Ponomarenko & R. V. Gorbachev & G. L. Yu & D. C. Elias & R. Jalil & A. A. Patel & A. Mishchenko & A. S. Mayorov & C. R. Woods & J. R. Wallbank & M. Mucha-Kruczynski & B. A. Piot & M. Potemski & , 2013. "Cloning of Dirac fermions in graphene superlattices," Nature, Nature, vol. 497(7451), pages 594-597, May.
    6. Xirui Wang & Cheng Xu & Samuel Aronson & Daniel Bennett & Nisarga Paul & Philip J. D. Crowley & Clément Collignon & Kenji Watanabe & Takashi Taniguchi & Raymond Ashoori & Efthimios Kaxiras & Yang Zhan, 2025. "Moiré band structure engineering using a twisted boron nitride substrate," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    7. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. C. R. Woods & P. Ares & H. Nevison-Andrews & M. J. Holwill & R. Fabregas & F. Guinea & A. K. Geim & K. S. Novoselov & N. R. Walet & L. Fumagalli, 2021. "Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. S. G. Xu & A. I. Berdyugin & P. Kumaravadivel & F. Guinea & R. Krishna Kumar & D. A. Bandurin & S. V. Morozov & W. Kuang & B. Tsim & S. Liu & J. H. Edgar & I. V. Grigorieva & V. I. Fal’ko & M. Kim & A, 2019. "Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohit Kumar Jat & Priya Tiwari & Robin Bajaj & Ishita Shitut & Shinjan Mandal & Kenji Watanabe & Takashi Taniguchi & H. R. Krishnamurthy & Manish Jain & Aveek Bid, 2024. "Higher order gaps in the renormalized band structure of doubly aligned hBN/bilayer graphene moiré superlattice," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. David Barcons Ruiz & Hanan Herzig Sheinfux & Rebecca Hoffmann & Iacopo Torre & Hitesh Agarwal & Roshan Krishna Kumar & Lorenzo Vistoli & Takashi Taniguchi & Kenji Watanabe & Adrian Bachtold & Frank H., 2022. "Engineering high quality graphene superlattices via ion milled ultra-thin etching masks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Le Zhang & Jing Ding & Hanxiao Xiang & Naitian Liu & Wenqiang Zhou & Linfeng Wu & Na Xin & Kenji Watanabe & Takashi Taniguchi & Shuigang Xu, 2024. "Electronic ferroelectricity in monolayer graphene moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xirui Wang & Cheng Xu & Samuel Aronson & Daniel Bennett & Nisarga Paul & Philip J. D. Crowley & Clément Collignon & Kenji Watanabe & Takashi Taniguchi & Raymond Ashoori & Efthimios Kaxiras & Yang Zhan, 2025. "Moiré band structure engineering using a twisted boron nitride substrate," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    7. Everton Arrighi & Viet-Hung Nguyen & Mario Di Luca & Gaia Maffione & Yuanzhuo Hong & Liam Farrar & Kenji Watanabe & Takashi Taniguchi & Dominique Mailly & Jean-Christophe Charlier & Rebeca Ribeiro-Pal, 2023. "Non-identical moiré twins in bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Xiuzhen Li & Biao Qin & Yaxian Wang & Yue Xi & Zhiheng Huang & Mengze Zhao & Yalin Peng & Zitao Chen & Zitian Pan & Jundong Zhu & Chenyang Cui & Rong Yang & Wei Yang & Sheng Meng & Dongxia Shi & Xuedo, 2024. "Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Si, Nan & Guan, Yin-Yan & Gao, Wei-Chun & Guo, An-Bang & Zhang, Yan-Li & Jiang, Wei, 2022. "Ferrimagnetism and reentrant behavior in a coronene-like superlattice with double-layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Zhao Guan & Lu-qi Wei & Wen-cheng Fan & Yi-chen Sun & Wei Cao & Ming Tian & Neng Wan & Wen-yi Tong & Bin-bin Chen & Ping-hua Xiang & Chun-gang Duan & Ni Zhong, 2025. "Mechanical force-induced interlayer sliding in interfacial ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    13. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Yunze Gao & Astrid Weston & Vladimir Enaldiev & Xiao Li & Wendong Wang & James E. Nunn & Isaac Soltero & Eli G. Castanon & Amy Carl & Hugo Latour & Alex Summerfield & Matthew Hamer & James Howarth & N, 2024. "Tunnel junctions based on interfacial two dimensional ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Daniel Bennett & Gaurav Chaudhary & Robert-Jan Slager & Eric Bousquet & Philippe Ghosez, 2023. "Polar meron-antimeron networks in strained and twisted bilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Swarup Deb & Johannes Krause & Paulo E. Faria Junior & Michael Andreas Kempf & Rico Schwartz & Kenji Watanabe & Takashi Taniguchi & Jaroslav Fabian & Tobias Korn, 2024. "Excitonic signatures of ferroelectric order in parallel-stacked MoS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Jin Jiang & Qixuan Gao & Zekang Zhou & Cheng Shen & Mario Di Luca & Emily Hajigeorgiou & Kenji Watanabe & Takashi Taniguchi & Mitali Banerjee, 2025. "Direct probing of energy gaps and bandwidth in gate-tunable flat band graphene systems," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Daniel Shaffer & Jian Wang & Luiz H. Santos, 2022. "Unconventional self-similar Hofstadter superconductivity from repulsive interactions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57111-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.