IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39716-7.html
   My bibliography  Save this article

Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity

Author

Listed:
  • Dengqin Zhong

    (Fudan University)

  • Ruiyun Wang

    (Fudan University)

  • Hongjing Zhang

    (Fudan University)

  • Mengmeng Wang

    (Fudan University)

  • Xuxia Zhang

    (Fudan University)

  • Honghong Chen

    (Fudan University)

Abstract

Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.

Suggested Citation

  • Dengqin Zhong & Ruiyun Wang & Hongjing Zhang & Mengmeng Wang & Xuxia Zhang & Honghong Chen, 2023. "Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39716-7
    DOI: 10.1038/s41467-023-39716-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39716-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39716-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongbiao Shen & Xiang Wang & Xinran Li & Xiaoli Zhang & Zepeng Yao & Shannon Dibble & Xian-ping Dong & Ting Yu & Andrew P. Lieberman & Hollis D. Showalter & Haoxing Xu, 2012. "Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
    2. Gennaro Napolitano & Chiara Di Malta & Alessandra Esposito & Mariana E. G. de Araujo & Salvatore Pece & Giovanni Bertalot & Maria Matarese & Valerio Benedetti & Angela Zampelli & Taras Stasyk & Dilett, 2020. "A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome," Nature, Nature, vol. 585(7826), pages 597-602, September.
    3. Xiaomei Wang & Xing Dai & Cen Shi & Jianmei Wan & Mark A. Silver & Linjuan Zhang & Lanhua Chen & Xuan Yi & Bizheng Chen & Duo Zhang & Kai Yang & Juan Diwu & Jianqiang Wang & Yujie Xu & Ruhong Zhou & Z, 2019. "A 3,2-Hydroxypyridinone-based Decorporation Agent that Removes Uranium from Bones In Vivo," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Xiaoli Zhang & Xiping Cheng & Lu Yu & Junsheng Yang & Raul Calvo & Samarjit Patnaik & Xin Hu & Qiong Gao & Meimei Yang & Maria Lawas & Markus Delling & Juan Marugan & Marc Ferrer & Haoxing Xu, 2016. "MCOLN1 is a ROS sensor in lysosomes that regulates autophagy," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
    5. Gennaro Napolitano & Alessandra Esposito & Heejun Choi & Maria Matarese & Valerio Benedetti & Chiara Di Malta & Jlenia Monfregola & Diego Luis Medina & Jennifer Lippincott-Schwartz & Andrea Ballabio, 2018. "mTOR-dependent phosphorylation controls TFEB nuclear export," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavia Giamogante & Lucia Barazzuol & Francesca Maiorca & Elena Poggio & Alessandra Esposito & Anna Masato & Gennaro Napolitano & Alessio Vagnoni & Tito Calì & Marisa Brini, 2024. "A SPLICS reporter reveals $${{{{{\boldsymbol{\alpha }}}}}}$$ α -synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Kaushal Asrani & Juhyung Woo & Adrianna A. Mendes & Ethan Schaffer & Thiago Vidotto & Clarence Rachel Villanueva & Kewen Feng & Lia Oliveira & Sanjana Murali & Hans B. Liu & Daniela C. Salles & Brando, 2022. "An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Kihyoun Park & Hyejin Lim & Jinyoung Kim & Yeseong Hwang & Yu Seol Lee & Soo Han Bae & Hyeongseok Kim & Hail Kim & Shin-Wook Kang & Joo Young Kim & Myung-Shik Lee, 2022. "Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic β-cells to metabolic stress," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Marie Villares & Nelly Lourenço & Ivan Ktorza & Jérémy Berthelet & Aristeidis Panagiotou & Aurélie Richard & Angélique Amo & Yulianna Koziy & Souhila Medjkane & Sergio Valente & Rossella Fioravanti & , 2024. "Theileria parasites sequester host eIF5A to escape elimination by host-mediated autophagy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Eutteum Jeong & Rose Willett & Alberto Rissone & Martina Spina & Rosa Puertollano, 2024. "TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Logan Brase & Shih-Feng You & Ricardo D’Oliveira Albanus & Jorge L. Del-Aguila & Yaoyi Dai & Brenna C. Novotny & Carolina Soriano-Tarraga & Taitea Dykstra & Maria Victoria Fernandez & John P. Budde & , 2023. "Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Irene Sambri & Marco Ferniani & Giulia Campostrini & Marialuisa Testa & Viviana Meraviglia & Mariana E. G. Araujo & Ladislav Dokládal & Claudia Vilardo & Jlenia Monfregola & Nicolina Zampelli & France, 2023. "RagD auto-activating mutations impair MiT/TFE activity in kidney tubulopathy and cardiomyopathy syndrome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Yoshito Minami & Atsushi Hoshino & Yusuke Higuchi & Masahide Hamaguchi & Yusaku Kaneko & Yuhei Kirita & Shunta Taminishi & Toshiyuki Nishiji & Akiyuki Taruno & Michiaki Fukui & Zoltan Arany & Satoaki , 2023. "Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Wenhao Li & Hongwei Zhu & Jinzhu Chen & Binglu Ru & Qin Peng & Jianqiang Miao & Xili Liu, 2024. "PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39716-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.