IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56671-7.html
   My bibliography  Save this article

Advancing Ag2Se thin-film thermoelectrics via selenization-driven anisotropy control

Author

Listed:
  • Tianyi Cao

    (Queensland University of Technology)

  • Xiao-Lei Shi

    (Queensland University of Technology)

  • Boxuan Hu

    (Queensland University of Technology)

  • Qishuo Yang

    (Queensland University of Technology
    The University of Queensland)

  • Wan-Yu Lyu

    (Queensland University of Technology)

  • Shuai Sun

    (Queensland University of Technology)

  • Liang-Cao Yin

    (Nanjing Tech University)

  • Qing-Yi Liu

    (Queensland University of Technology)

  • Wenyi Chen

    (The University of Queensland)

  • Xiaodong Wang

    (Queensland University of Technology)

  • Siqi Liu

    (Queensland University of Technology)

  • Meng Li

    (Queensland University of Technology)

  • Wei-Di Liu

    (Queensland University of Technology)

  • Tuquabo Tesfamichael

    (Queensland University of Technology)

  • Qingfeng Liu

    (Nanjing Tech University)

  • Jennifer MacLeod

    (Queensland University of Technology)

  • Zhi-Gang Chen

    (Queensland University of Technology)

Abstract

The debate over the optimal orientation of Ag2Se thin films and its influence on thermoelectric performance remains ongoing. Here, we report a wet-chemical selenization-based anisotropy optimization technique to control the in-plane orientation of the Ag2Se thin film, steering it away from (002) nearly parallel planes that hinder charge carrier mobility. This approach enables us to achieve an impressive power factor of 30.8 μW cm−1 K−2 at 343 K. The as-fabricated Ag2Se thin film demonstrates remarkable durability, retaining over 90% of its power factor after six months of air exposure, and outstanding flexibility, with performance variation staying within 5% after 2000 bending cycles at a 5 mm radius. These attributes are attributed to the controlled film thickness, crystallinity, and strong adhesion to the polyimide substrate. Additionally, the as-assembled slotted thermoelectric device delivers an output power of 0.58 μW and a competitive power density of 807 μW cm−2 at a temperature difference of 20 K, alongside a high normalized power density of 1.8 μW cm−2 K−2, highlighting its potential for practical application. This study provides valuable insights into the design of high-performance, highly flexible thermoelectric thin films for real-world applications.

Suggested Citation

  • Tianyi Cao & Xiao-Lei Shi & Boxuan Hu & Qishuo Yang & Wan-Yu Lyu & Shuai Sun & Liang-Cao Yin & Qing-Yi Liu & Wenyi Chen & Xiaodong Wang & Siqi Liu & Meng Li & Wei-Di Liu & Tuquabo Tesfamichael & Qingf, 2025. "Advancing Ag2Se thin-film thermoelectrics via selenization-driven anisotropy control," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56671-7
    DOI: 10.1038/s41467-025-56671-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56671-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56671-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    2. Zhuang-Hao Zheng & Xiao-Lei Shi & Dong-Wei Ao & Wei-Di Liu & Meng Li & Liang-Zhi Kou & Yue-Xing Chen & Fu Li & Meng Wei & Guang-Xing Liang & Ping Fan & Gao Qing (Max) Lu & Zhi-Gang Chen, 2023. "Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film," Nature Sustainability, Nature, vol. 6(2), pages 180-191, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Feng, Mengqi & Lv, Song & Deng, Jingcai & Guo, Ying & Wu, Yangyang & Shi, Guoqing & Zhang, Mingming, 2023. "An overview of environmental energy harvesting by thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Liqing Xu & Yu Xiao & Sining Wang & Bo Cui & Di Wu & Xiangdong Ding & Li-Dong Zhao, 2022. "Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    8. Yu Pan & Bin He & Toni Helm & Dong Chen & Walter Schnelle & Claudia Felser, 2022. "Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Degang Zhao & Di Wu & Lin Bo, 2017. "Enhanced Thermoelectric Properties of Cu 3 SbSe 4 Compounds via Gallium Doping," Energies, MDPI, vol. 10(10), pages 1-9, October.
    10. Jingdan Lei & Kunpeng Zhao & Jincheng Liao & Shiqi Yang & Ziming Zhang & Tian-Ran Wei & Pengfei Qiu & Min Zhu & Lidong Chen & Xun Shi, 2024. "Approaching crystal’s limit of thermoelectrics by nano-sintering-aid at grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Guodong Tang & Yuqi Liu & Xiaoyu Yang & Yongsheng Zhang & Pengfei Nan & Pan Ying & Yaru Gong & Xuemei Zhang & Binghui Ge & Nan Lin & Xuefei Miao & Kun Song & Carl-Friedrich Schön & Matteo Cagnoni & Da, 2024. "Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Zhang, A.B. & Wang, B.L. & Pang, D.D. & He, L.W. & Lou, J. & Wang, J. & Du, J.K., 2018. "Effects of interface layers on the performance of annular thermoelectric generators," Energy, Elsevier, vol. 147(C), pages 612-620.
    14. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    15. Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
    16. Yilin Jiang & Bin Su & Jincheng Yu & Zhanran Han & Haihua Hu & Hua-Lu Zhuang & Hezhang Li & Jinfeng Dong & Jing-Wei Li & Chao Wang & Zhen-Hua Ge & Jing Feng & Fu-Hua Sun & Jing-Feng Li, 2024. "Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Hangtian Zhu & Wenjie Li & Amin Nozariasbmarz & Na Liu & Yu Zhang & Shashank Priya & Bed Poudel, 2023. "Half-Heusler alloys as emerging high power density thermoelectric cooling materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Zhang, Mingcheng & Liu, Ying & Li, Jiajia & Wu, Changxuan & Wang, Zixing & Liu, Yuexin & Wei, Ping & Zhao, Wenyu & Cai, Kefeng, 2024. "Scalable printing high-performance and self-healable Ag2Se/terpineol nanocomposite film for flexible thermoelectric device," Energy, Elsevier, vol. 296(C).
    19. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.
    20. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56671-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.