Author
Listed:
- Hongao Liu
(State Key Laboratory of Intelligent Vehicle Safety Technology
Chongqing University)
- Chang Li
(State Key Laboratory of Intelligent Vehicle Safety Technology)
- Xiaosong Hu
(Chongqing University)
- Jinwen Li
(Chongqing University)
- Kai Zhang
(Chongqing University)
- Yang Xie
(State Key Laboratory of Intelligent Vehicle Safety Technology)
- Ranglei Wu
(State Key Laboratory of Intelligent Vehicle Safety Technology)
- Ziyou Song
(National University of Singapore)
Abstract
Accurate, practical, and robust evaluation of the battery state of health is crucial to the efficient and reliable operation of electric vehicles. However, the limited availability of large-scale, high-quality field data hinders the development of the battery management system for state of health estimation, lifetime prediction, and fault detection in various applications. In this work, to gain insights into underlying factors limiting battery management system performance in real-world vehicles, we analyze the operational data of 300 diverse electric vehicles over three years to understand the disparities between field data and laboratory battery test data and their effect on state of health estimation. Furthermore, we propose a deep learning-based multi-modal framework to effectively leverage historical vehicle data for efficient, accurate, and cost-effective state of health estimation. The proposed paradigm exhibits considerable potential for numerous applications in state estimation and diagnostics in multi-sensor systems. Furthermore, we make the field data of these electric vehicles publicly available aiming to promote further research on the development of effective and reliable battery management systems for real-world vehicles.
Suggested Citation
Hongao Liu & Chang Li & Xiaosong Hu & Jinwen Li & Kai Zhang & Yang Xie & Ranglei Wu & Ziyou Song, 2025.
"Multi-modal framework for battery state of health evaluation using open-source electric vehicle data,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56485-7
DOI: 10.1038/s41467-025-56485-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56485-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.