IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56374-z.html
   My bibliography  Save this article

Artificial photosynthesis directed toward organic synthesis

Author

Listed:
  • Shogo Mori

    (Chikusa)

  • Riku Hashimoto

    (Chikusa)

  • Takashi Hisatomi

    (Nagano)

  • Kazunari Domen

    (Nagano
    Bunkyo)

  • Susumu Saito

    (Chikusa
    Chikusa)

Abstract

In nature, plants convert solar energy into chemical energy via water oxidation. Inspired by natural photosynthesis, artificial photosynthesis has been gaining increasing interest in the field of sustainability/green science and technology as a non-natural and thermodynamically endergonic (ΔG° > 0, uphill) solar-energy-driven reaction that uses water as an electron donor and a source material. Among the artificial-photosynthesis processes, inorganic-synthesis reactions via water oxidation, including water splitting and CO2-to-fuel conversion, have been attracting much attention. In contrast, the synthesis of high-value functionalized organic compounds via artificial photosynthesis, which we have termed artificial photosynthesis directed toward organic synthesis (APOS), remains a great challenge. Herein, we report a synthetically pioneering and meaningful strategy of APOS, where the carbohydroxylation of C = C double bonds is accomplished via a three-component coupling with H2 evolution using dual functions of semiconductor photocatalysts, i.e., silver-loaded titanium dioxide (Ag/TiO2) and rhodium–chromium–cobalt-loaded aluminum-doped strontium titanate (RhCrCo/SrTiO3:Al).

Suggested Citation

  • Shogo Mori & Riku Hashimoto & Takashi Hisatomi & Kazunari Domen & Susumu Saito, 2025. "Artificial photosynthesis directed toward organic synthesis," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56374-z
    DOI: 10.1038/s41467-025-56374-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56374-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56374-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56374-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.