IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56173-6.html
   My bibliography  Save this article

Decoding the m6A epitranscriptomic landscape for biotechnological applications using a direct RNA sequencing approach

Author

Listed:
  • Chuwei Liu

    (Sun Yat-Sen University)

  • Heng Liang

    (Sun Yat-Sen University)

  • Arabella H. Wan

    (University of Southern California)

  • Min Xiao

    (Sun Yat-Sen University)

  • Lei Sun

    (Sun Yat-Sen University)

  • Yiling Yu

    (Sun Yat-Sen University)

  • Shijia Yan

    (Sun Yat-Sen University)

  • Yuan Deng

    (Sun Yat-Sen University)

  • Ruonian Liu

    (Sun Yat-Sen University)

  • Juan Fang

    (Sun Yat-Sen University)

  • Zhi Wang

    (Sun Yat-Sen University)

  • Weiling He

    (Sun Yat-Sen University
    Xiamen University)

  • Guohui Wan

    (Sun Yat-Sen University)

Abstract

Epitranscriptomic modifications, particularly N6-methyladenosine (m6A), are crucial regulators of gene expression, influencing processes such as RNA stability, splicing, and translation. Traditional computational methods for detecting m6A from Nanopore direct RNA sequencing (DRS) data are constrained by their reliance on experimentally validated labels, often resulting in the underestimation of modification sites. Here, we introduce pum6a, an innovative attention-based framework that integrates positive and unlabeled multi-instance learning (MIL) to address the challenges of incomplete labeling and missing read-level annotations. By combining electrical signal features with base alignment data and employing a weighted Noisy-OR probability mechanism, pum6a achieves enhanced sensitivity and accuracy in m6A detection, particularly in low-coverage loci. Pum6a outperforms existing methods in identifying m6A sites across various cell lines and species, without requiring extensive parameter tuning. We further apply pum6a to study the dynamic regulation of m6A demethylases in gastric cancer under hypoxia, revealing distinct roles for FTO and ALKBH5 in modulating m6A modifications and uncovering key insights into m6A -mediated transcript stability. Our findings highlight the potential of pum6a as a powerful tool for advancing the understanding of epitranscriptomic regulation in health and disease, paving the way for biotechnological and therapeutic applications.

Suggested Citation

  • Chuwei Liu & Heng Liang & Arabella H. Wan & Min Xiao & Lei Sun & Yiling Yu & Shijia Yan & Yuan Deng & Ruonian Liu & Juan Fang & Zhi Wang & Weiling He & Guohui Wan, 2025. "Decoding the m6A epitranscriptomic landscape for biotechnological applications using a direct RNA sequencing approach," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56173-6
    DOI: 10.1038/s41467-025-56173-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56173-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56173-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deepak P. Patil & Chun-Kan Chen & Brian F. Pickering & Amy Chow & Constanza Jackson & Mitchell Guttman & Samie R. Jaffrey, 2016. "m6A RNA methylation promotes XIST-mediated transcriptional repression," Nature, Nature, vol. 537(7620), pages 369-373, September.
    2. Nian Liu & Qing Dai & Guanqun Zheng & Chuan He & Marc Parisien & Tao Pan, 2015. "N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions," Nature, Nature, vol. 518(7540), pages 560-564, February.
    3. Hao Du & Ya Zhao & Jinqiu He & Yao Zhang & Hairui Xi & Mofang Liu & Jinbiao Ma & Ligang Wu, 2016. "YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    4. Casslynn W. Q. Koh & Yeek Teck Goh & W. S. Sho Goh, 2019. "Atlas of quantitative single-base-resolution N6-methyl-adenine methylomes," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    5. Xiao Wang & Zhike Lu & Adrian Gomez & Gary C. Hon & Yanan Yue & Dali Han & Ye Fu & Marc Parisien & Qing Dai & Guifang Jia & Bing Ren & Tao Pan & Chuan He, 2014. "N6-methyladenosine-dependent regulation of messenger RNA stability," Nature, Nature, vol. 505(7481), pages 117-120, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Kristin A. Fluke & Ryan T. Fuchs & Yueh-Lin Tsai & Victoria Talbott & Liam Elkins & Hallie P. Febvre & Nan Dai & Eric J. Wolf & Brett W. Burkhart & Jackson Schiltz & G. Brett Robb & Ivan R. Corrêa & T, 2024. "The extensive m5C epitranscriptome of Thermococcus kodakarensis is generated by a suite of RNA methyltransferases that support thermophily," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Shujie Chen, & Lu Zhang & Mengjie Li & Ying Zhang & Meng Sun & Lingfang Wang & Jiebo Lin & Yun Cui & Qian Chen & Chenqi Jin & Xiang Li & Boya Wang & Hao Chen & Tianhua Zhou & Liangjing Wang & Chih-Hun, 2022. "Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Yuwei Zhang & Jieyu Zhao & Xiaona Chen & Yulong Qiao & Jinjin Kang & Xiaofan Guo & Feng Yang & Kaixin Lyu & Yiliang Ding & Yu Zhao & Hao Sun & Chun-Kit Kwok & Huating Wang, 2024. "DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A reader YTHDF1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Xiaojie Ma & Jie Cao & Ziyu Zhou & Yunkun Lu & Qin Li & Yan Jin & Guo Chen & Weiyun Wang & Wenyan Ge & Xi Chen & Zhensheng Hu & Xiao Shu & Qian Deng & Jiaqi Pu & Chengzhen Liang & Junfen Fu & Jianzhao, 2022. "N6-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Christopher J. Gilbert & Charles P. Rabolli & Volha A. Golubeva & Kristina M. Sattler & Meifang Wang & Arsh Ketabforoush & W. David Arnold & Christoph Lepper & Federica Accornero, 2024. "YTHDF2 governs muscle size through a targeted modulation of proteostasis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. You Wu & Wenna Shao & Mengxiao Yan & Yuqin Wang & Pengfei Xu & Guoqiang Huang & Xiaofei Li & Brian D. Gregory & Jun Yang & Hongxia Wang & Xiang Yu, 2024. "Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Fabian Poetz & Joshua Corbo & Yevgen Levdansky & Alexander Spiegelhalter & Doris Lindner & Vera Magg & Svetlana Lebedeva & Jörg Schweiggert & Johanna Schott & Eugene Valkov & Georg Stoecklin, 2021. "RNF219 attenuates global mRNA decay through inhibition of CCR4-NOT complex-mediated deadenylation," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Hyun Jung Hwang & Tae Lim Park & Hyeong-In Kim & Yeonkyoung Park & Geunhee Kim & Chiyeol Song & Won-Ki Cho & Yoon Ki Kim, 2023. "YTHDF2 facilitates aggresome formation via UPF1 in an m6A-independent manner," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Debjit Khan & Iyappan Ramachandiran & Kommireddy Vasu & Arnab China & Krishnendu Khan & Fabio Cumbo & Dalia Halawani & Fulvia Terenzi & Isaac Zin & Briana Long & Gregory Costain & Susan Blaser & Amand, 2024. "Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m6A site accessibility," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    11. Zhiyuan Luo & Qilian Ma & Shan Sun & Ningning Li & Hongfeng Wang & Zheng Ying & Shengdong Ke, 2023. "Exon-intron boundary inhibits m6A deposition, enabling m6A distribution hallmark, longer mRNA half-life and flexible protein coding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Xiao-Lan Zhang & Xin-Hui Chen & Binwu Xu & Min Chen & Song Zhu & Nan Meng & Ji-Zhong Wang & Huifang Zhu & De Chen & Jin-Bao Liu & Guang-Rong Yan, 2023. "K235 acetylation couples with PSPC1 to regulate the m6A demethylation activity of ALKBH5 and tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Ainara González-Iglesias & Aida Arcas & Ana Domingo-Muelas & Estefania Mancini & Joan Galcerán & Juan Valcárcel & Isabel Fariñas & M. Angela Nieto, 2024. "Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Renkun Tang & Xiaoyu Duan & Leilei Zhou & Guangtong Gao & Jinying Liu & Yuying Wang & Xingfeng Shao & Guozheng Qin, 2024. "The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    16. Xiao Han & Lijuan Liu & Saihua Huang & Wenfeng Xiao & Yajing Gao & Weitao Zhou & Caiyan Zhang & Hongmei Zheng & Lan Yang & Xueru Xie & Qiuyan Liang & Zikun Tu & Hongmiao Yu & Jinrong Fu & Libo Wang & , 2023. "RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Sakshi Jain & Lukasz Koziej & Panagiotis Poulis & Igor Kaczmarczyk & Monika Gaik & Michal Rawski & Namit Ranjan & Sebastian Glatt & Marina V. Rodnina, 2023. "Modulation of translational decoding by m6A modification of mRNA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Bin Li & Wen Xi & Ying Bai & Xue Liu & Yuan Zhang & Lu Li & Liang Bian & Chenchen Liu & Ying Tang & Ling Shen & Li Yang & Xiaochun Gu & Jian Xie & Zhongqiu Zhou & Yu Wang & Xiaoyu Yu & Jianhong Wang &, 2023. "FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Manjit Kumar Srivastav & H. Diego Folco & Patroula Nathanailidou & Anupa T Anil & Drisya Vijayakumari & Shweta Jain & Jothy Dhakshnamoorthy & Maura O’Neill & Thorkell Andresson & David Wheeler & Shiv , 2025. "PhpCNF-Y transcription factor infiltrates heterochromatin to generate cryptic intron-containing transcripts crucial for small RNA production," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Hyun Jung Hwang & Hongseok Ha & Ban Seok Lee & Bong Heon Kim & Hyun Kyu Song & Yoon Ki Kim, 2022. "LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56173-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.