IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39414-4.html
   My bibliography  Save this article

K235 acetylation couples with PSPC1 to regulate the m6A demethylation activity of ALKBH5 and tumorigenesis

Author

Listed:
  • Xiao-Lan Zhang

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • Xin-Hui Chen

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • Binwu Xu

    (the Second Affiliated Hospital of Nanchang University)

  • Min Chen

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • Song Zhu

    (the Third Affiliated Hospital of Guangzhou Medical University
    The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital)

  • Nan Meng

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • Ji-Zhong Wang

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • Huifang Zhu

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • De Chen

    (the Third Affiliated Hospital of Guangzhou Medical University)

  • Jin-Bao Liu

    (Guangzhou Medical University)

  • Guang-Rong Yan

    (the Third Affiliated Hospital of Guangzhou Medical University)

Abstract

N6-methyladenosine (m6A) modification plays important roles in bioprocesses and diseases. AlkB homolog 5 (ALKBH5) is one of two m6A demethylases. Here, we reveal that ALKBH5 is acetylated at lysine 235 (K235) by lysine acetyltransferase 8 and deacetylated by histone deacetylase 7. K235 acetylation strengthens the m6A demethylation activity of ALKBH5 by increasing its recognition of m6A on mRNA. RNA-binding protein paraspeckle component 1 (PSCP1) is a regulatory subunit of ALKBH5 and preferentially interacts with K235-acetylated ALKBH5 to recruit and facilitate the recognition of m6A mRNA by ALKBH5, thereby promoting m6A erasure. Mitogenic signals promote ALKBH5 K235 acetylation. K235 acetylation of ALKBH5 is upregulated in cancers and promotes tumorigenesis. Thus, our findings reveal that the m6A demethylation activity of ALKBH5 is orchestrated by its K235 acetylation and regulatory subunit PSPC1 and that K235 acetylation is necessary for the m6A demethylase activity and oncogenic roles of ALKBH5.

Suggested Citation

  • Xiao-Lan Zhang & Xin-Hui Chen & Binwu Xu & Min Chen & Song Zhu & Nan Meng & Ji-Zhong Wang & Huifang Zhu & De Chen & Jin-Bao Liu & Guang-Rong Yan, 2023. "K235 acetylation couples with PSPC1 to regulate the m6A demethylation activity of ALKBH5 and tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39414-4
    DOI: 10.1038/s41467-023-39414-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39414-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39414-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nian Liu & Qing Dai & Guanqun Zheng & Chuan He & Marc Parisien & Tao Pan, 2015. "N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions," Nature, Nature, vol. 518(7540), pages 560-564, February.
    2. Xiao Wang & Zhike Lu & Adrian Gomez & Gary C. Hon & Yanan Yue & Dali Han & Ye Fu & Marc Parisien & Qing Dai & Guifang Jia & Bing Ren & Tao Pan & Chuan He, 2014. "N6-methyladenosine-dependent regulation of messenger RNA stability," Nature, Nature, vol. 505(7481), pages 117-120, January.
    3. Song Zhu & Ji-Zhong Wang & De Chen & Yu-Tian He & Nan Meng & Min Chen & Rui-Xun Lu & Xin-Hui Chen & Xiao-Lan Zhang & Guang-Rong Yan, 2020. "An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristin A. Fluke & Ryan T. Fuchs & Yueh-Lin Tsai & Victoria Talbott & Liam Elkins & Hallie P. Febvre & Nan Dai & Eric J. Wolf & Brett W. Burkhart & Jackson Schiltz & G. Brett Robb & Ivan R. Corrêa & T, 2024. "The extensive m5C epitranscriptome of Thermococcus kodakarensis is generated by a suite of RNA methyltransferases that support thermophily," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Zhiyuan Luo & Qilian Ma & Shan Sun & Ningning Li & Hongfeng Wang & Zheng Ying & Shengdong Ke, 2023. "Exon-intron boundary inhibits m6A deposition, enabling m6A distribution hallmark, longer mRNA half-life and flexible protein coding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Ainara González-Iglesias & Aida Arcas & Ana Domingo-Muelas & Estefania Mancini & Joan Galcerán & Juan Valcárcel & Isabel Fariñas & M. Angela Nieto, 2024. "Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Shujie Chen, & Lu Zhang & Mengjie Li & Ying Zhang & Meng Sun & Lingfang Wang & Jiebo Lin & Yun Cui & Qian Chen & Chenqi Jin & Xiang Li & Boya Wang & Hao Chen & Tianhua Zhou & Liangjing Wang & Chih-Hun, 2022. "Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Xiao Han & Lijuan Liu & Saihua Huang & Wenfeng Xiao & Yajing Gao & Weitao Zhou & Caiyan Zhang & Hongmei Zheng & Lan Yang & Xueru Xie & Qiuyan Liang & Zikun Tu & Hongmiao Yu & Jinrong Fu & Libo Wang & , 2023. "RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Sakshi Jain & Lukasz Koziej & Panagiotis Poulis & Igor Kaczmarczyk & Monika Gaik & Michal Rawski & Namit Ranjan & Sebastian Glatt & Marina V. Rodnina, 2023. "Modulation of translational decoding by m6A modification of mRNA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Bin Li & Wen Xi & Ying Bai & Xue Liu & Yuan Zhang & Lu Li & Liang Bian & Chenchen Liu & Ying Tang & Ling Shen & Li Yang & Xiaochun Gu & Jian Xie & Zhongqiu Zhou & Yu Wang & Xiaoyu Yu & Jianhong Wang &, 2023. "FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Hyun Jung Hwang & Hongseok Ha & Ban Seok Lee & Bong Heon Kim & Hyun Kyu Song & Yoon Ki Kim, 2022. "LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Christopher P. Watkins & Wen Zhang & Adam C. Wylder & Christopher D. Katanski & Tao Pan, 2022. "A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Yan Xu & Zhuowei Zhou & Xinmei Kang & Lijie Pan & Chang Liu & Xiaoqi Liang & Jiajie Chu & Shuai Dong & Yanli Li & Qiuli Liu & Yuetong Sun & Shanshan Yu & Qi Zhang, 2022. "Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Guoqiang Zhang & Yongru Xu & Xiaona Wang & Yuanxiang Zhu & Liangliang Wang & Wenxin Zhang & Yiru Wang & Yajie Gao & Xuna Wu & Ying Cheng & Qinmiao Sun & Dahua Chen, 2022. "Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Xiaojie Ma & Jie Cao & Ziyu Zhou & Yunkun Lu & Qin Li & Yan Jin & Guo Chen & Weiyun Wang & Wenyan Ge & Xi Chen & Zhensheng Hu & Xiao Shu & Qian Deng & Jiaqi Pu & Chengzhen Liang & Junfen Fu & Jianzhao, 2022. "N6-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Man Zhang & Yunping Zeng & Rong Peng & Jie Dong & Yelin Lan & Sujuan Duan & Zhenyi Chang & Jian Ren & Guanzheng Luo & Bing Liu & Kamil Růžička & Kewei Zhao & Hong-Bin Wang & Hong-Lei Jin, 2022. "N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Xiangbin Ruan & Kaining Hu & Xiaochang Zhang, 2023. "PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Jasmin Bartl & Marco Zanini & Flavia Bernardi & Antoine Forget & Lena Blümel & Julie Talbot & Daniel Picard & Nan Qin & Gabriele Cancila & Qingsong Gao & Soumav Nath & Idriss Mahoungou Koumba & Mariet, 2022. "The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Xiaochuan Liu & Hao Chen & Zekun Li & Xiaoxiao Yang & Wen Jin & Yuting Wang & Jian Zheng & Long Li & Chenghao Xuan & Jiapei Yuan & Yang Yang, 2024. "InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Mwikali Kioko & Alena Pance & Shaban Mwangi & David Goulding & Alison Kemp & Martin Rono & Lynette Isabella Ochola-Oyier & Pete C. Bull & Philip Bejon & Julian C. Rayner & Abdirahman I. Abdi, 2023. "Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Yichi Niu & Jiayi Luo & Chenghang Zong, 2024. "Single-cell total-RNA profiling unveils regulatory hubs of transcription factors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39414-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.