IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56120-5.html
   My bibliography  Save this article

Metabolic activities are selective modulators for individual segmentation clock processes

Author

Listed:
  • Mitsuhiro Matsuda

    (European Molecular Biology Laboratory (EMBL) Barcelona
    TU Dresden)

  • Jorge Lázaro

    (European Molecular Biology Laboratory (EMBL) Barcelona
    Faculty of Biosciences)

  • Miki Ebisuya

    (European Molecular Biology Laboratory (EMBL) Barcelona
    TU Dresden
    Max Planck Institute of Molecular Cell Biology and Genetics)

Abstract

Numerous cellular and molecular processes during embryonic development prompt the fundamental question of how their tempos are coordinated and whether a common global modulator exists. While the segmentation clock tempo scales with the kinetics of gene expression and degradation processes of the core clock gene Hes7 across mammals, the coordination of these processes remains unclear. This study examines whether metabolic activities serve as a global modulator for the segmentation clock, finding them to be selective instead. Several metabolic inhibitions extend the clock period but affect key processes differently: glycolysis inhibition slows Hes7 protein degradation and production delay without altering intron delay, while electron transport chain inhibition extends intron delay without influencing the other processes. Combinations of distinct metabolic inhibitions exhibit synergistic effects. We propose that the scaled kinetics of segmentation clock processes across species may result from combined selective modulators shaped by evolutionary constraints, rather than a single global modulator.

Suggested Citation

  • Mitsuhiro Matsuda & Jorge Lázaro & Miki Ebisuya, 2025. "Metabolic activities are selective modulators for individual segmentation clock processes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56120-5
    DOI: 10.1038/s41467-025-56120-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56120-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56120-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yun-Jin Jiang & Birgit L. Aerne & Lucy Smithers & Catherine Haddon & David Ish-Horowicz & Julian Lewis, 2000. "Notch signalling and the synchronization of the somite segmentation clock," Nature, Nature, vol. 408(6811), pages 475-479, November.
    2. Margarete Diaz-Cuadros & Daniel E. Wagner & Christoph Budjan & Alexis Hubaud & Oscar A. Tarazona & Sophia Donelly & Arthur Michaut & Ziad Al Tanoury & Kumiko Yoshioka-Kobayashi & Yusuke Niino & Ryoich, 2020. "In vitro characterization of the human segmentation clock," Nature, Nature, vol. 580(7801), pages 113-118, April.
    3. Margarete Diaz-Cuadros & Teemu P. Miettinen & Owen S. Skinner & Dylan Sheedy & Carlos Manlio Díaz-García & Svetlana Gapon & Alexis Hubaud & Gary Yellen & Scott R. Manalis & William M. Oldham & Olivier, 2023. "Metabolic regulation of species-specific developmental rates," Nature, Nature, vol. 613(7944), pages 550-557, January.
    4. Margarete Diaz-Cuadros & Teemu P. Miettinen & Owen S. Skinner & Dylan Sheedy & Carlos Manlio Díaz-García & Svetlana Gapon & Alexis Hubaud & Gary Yellen & Scott R. Manalis & William M. Oldham & Olivier, 2023. "Author Correction: Metabolic regulation of species-specific developmental rates," Nature, Nature, vol. 616(7956), pages 4-4, April.
    5. Masayuki Oginuma & Yukiko Harima & Oscar A. Tarazona & Margarete Diaz-Cuadros & Arthur Michaut & Tohru Ishitani & Fengzhu Xiong & Olivier Pourquié, 2020. "Intracellular pH controls WNT downstream of glycolysis in amniote embryos," Nature, Nature, vol. 584(7819), pages 98-101, August.
    6. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    7. Mitsuhiro Matsuda & Yoshihiro Yamanaka & Maya Uemura & Mitsujiro Osawa & Megumu K. Saito & Ayako Nagahashi & Megumi Nishio & Long Guo & Shiro Ikegawa & Satoko Sakurai & Shunsuke Kihara & Thomas L. Mau, 2020. "Recapitulating the human segmentation clock with pluripotent stem cells," Nature, Nature, vol. 580(7801), pages 124-129, April.
    8. Knut Woltjen & Iacovos P. Michael & Paria Mohseni & Ridham Desai & Maria Mileikovsky & Riikka Hämäläinen & Rebecca Cowling & Wei Wang & Pentao Liu & Marina Gertsenstein & Keisuke Kaji & Hoon-Ki Sung &, 2009. "piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells," Nature, Nature, vol. 458(7239), pages 766-770, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Sanaki-Matsumiya & Mitsuhiro Matsuda & Nicola Gritti & Fumio Nakaki & James Sharpe & Vikas Trivedi & Miki Ebisuya, 2022. "Periodic formation of epithelial somites from human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Pawel Lisowski & Selene Lickfett & Agnieszka Rybak-Wolf & Carmen Menacho & Stephanie Le & Tancredi Massimo Pentimalli & Sofia Notopoulou & Werner Dykstra & Daniel Oehler & Sandra López-Calcerrada & Ba, 2024. "Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    3. Ece Özelçi & Erik Mailand & Matthias Rüegg & Andrew C. Oates & Mahmut Selman Sakar, 2022. "Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    5. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    6. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    7. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    8. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    9. Haipeng Fu & Tingyu Wang & Xiaohui Kong & Kun Yan & Yang Yang & Jingyi Cao & Yafei Yuan & Nan Wang & Kehkooi Kee & Zhi John Lu & Qiaoran Xi, 2022. "A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    11. Fjodor Merkuri & Megan Rothstein & Marcos Simoes-Costa, 2024. "Histone lactylation couples cellular metabolism with developmental gene regulatory networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Norbert Brunner & Manfred Kühleitner & Werner Georg Nowak & Katharina Renner-Martin & Klaus Scheicher, 2019. "Comparing growth patterns of three species: Similarities and differences," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-9, October.
    13. Umji Lee & Yadong Zhang & Yonglin Zhu & Allen Chilun Luo & Liyan Gong & Daniel M. Tremmel & Yunhye Kim & Victoria Sofia Villarreal & Xi Wang & Ruei-Zeng Lin & Miao Cui & Minglin Ma & Ke Yuan & Kai Wan, 2024. "Robust differentiation of human pluripotent stem cells into mural progenitor cells via transient activation of NKX3.1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
    15. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    16. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    17. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    18. Carl‐Johan Dalgaard & Holger Strulik, 2016. "Physiology and Development: Why the West is Taller Than the Rest," Economic Journal, Royal Economic Society, vol. 126(598), pages 2292-2323, December.
    19. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    20. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56120-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.