IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56086-4.html
   My bibliography  Save this article

A dual role of Cohesin in DNA DSB repair

Author

Listed:
  • Michael Fedkenheuer

    (National Institutes of Health)

  • Yafang Shang

    (University of Chinese Academy of Sciences)

  • Seolkyoung Jung

    (National Institutes of Health)

  • Kevin Fedkenheuer

    (National Institutes of Health)

  • Solji Park

    (National Institutes of Health)

  • Davide Mazza

    (Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute)

  • Robin Sebastian

    (NIH)

  • Hiroyuki Nagashima

    (National Institutes of Health)

  • Dali Zong

    (National Cancer Institute NIH)

  • Hua Tan

    (National Institutes of Health)

  • Sushil Kumar Jaiswal

    (National Institutes of Health)

  • Haiqing Fu

    (NIH)

  • Anthony Cruz

    (National Institutes of Health)

  • Supriya V. Vartak

    (National Institutes of Health)

  • Jan Wisniewski

    (National Cancer Institute NIH)

  • Vittorio Sartorelli

    (National Institutes of Health)

  • John J. O’Shea

    (National Institutes of Health)

  • Laura Elnitski

    (National Institutes of Health)

  • Andre Nussenzweig

    (National Cancer Institute NIH)

  • Mirit I. Aladjem

    (NIH)

  • Fei-Long Meng

    (University of Chinese Academy of Sciences)

  • Rafael Casellas

    (The University of Texas MD Anderson Cancer Center)

Abstract

Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion. However, the mechanisms by which cohesin regulates these distinct processes are not fully understood. In this study, we identify two separate roles for cohesin in DNA repair within mammalian cells. First, cohesin serves as an intrinsic architectural factor that normally prevents interactions between damaged chromatin. Second, cohesin has an architecture-independent role triggered by ATM phosphorylation of SMC1, which enhances the efficiency of repair. Our findings suggest that these two functions work together to reduce the occurrence of translocations and deletions associated with non-homologous end joining, thereby maintaining genomic stability.

Suggested Citation

  • Michael Fedkenheuer & Yafang Shang & Seolkyoung Jung & Kevin Fedkenheuer & Solji Park & Davide Mazza & Robin Sebastian & Hiroyuki Nagashima & Dali Zong & Hua Tan & Sushil Kumar Jaiswal & Haiqing Fu & , 2025. "A dual role of Cohesin in DNA DSB repair," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56086-4
    DOI: 10.1038/s41467-025-56086-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56086-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56086-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick L. Collins & Caitlin Purman & Sofia I. Porter & Vincent Nganga & Ankita Saini & Katharina E. Hayer & Greer L. Gurewitz & Barry P. Sleckman & Jeffrey J. Bednarski & Craig H. Bassing & Eugene M., 2020. "DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Coline Arnould & Vincent Rocher & Florian Saur & Aldo S. Bader & Fernando Muzzopappa & Sarah Collins & Emma Lesage & Benjamin Bozec & Nadine Puget & Thomas Clouaire & Thomas Mangeat & Raphael Mourad &, 2023. "Author Correction: Chromatin compartmentalization regulates the response to DNA damage," Nature, Nature, vol. 624(7990), pages 1-1, December.
    3. Andrea M. Kaminski & Percy P. Tumbale & Matthew J. Schellenberg & R. Scott Williams & Jason G. Williams & Thomas A. Kunkel & Lars C. Pedersen & Katarzyna Bebenek, 2018. "Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Coline Arnould & Vincent Rocher & Anne-Laure Finoux & Thomas Clouaire & Kevin Li & Felix Zhou & Pierre Caron & Philippe. E. Mangeot & Emiliano P. Ricci & Raphaël Mourad & James E. Haber & Daan Noorder, 2021. "Loop extrusion as a mechanism for formation of DNA damage repair foci," Nature, Nature, vol. 590(7847), pages 660-665, February.
    5. Coline Arnould & Vincent Rocher & Florian Saur & Aldo S. Bader & Fernando Muzzopappa & Sarah Collins & Emma Lesage & Benjamin Bozec & Nadine Puget & Thomas Clouaire & Thomas Mangeat & Raphael Mourad &, 2023. "Chromatin compartmentalization regulates the response to DNA damage," Nature, Nature, vol. 623(7985), pages 183-192, November.
    6. Jacob T. Sanders & Trevor F. Freeman & Yang Xu & Rosela Golloshi & Mary A. Stallard & Ashtyn M. Hill & Rebeca San Martin & Adayabalam S. Balajee & Rachel Patton McCord, 2020. "Radiation-induced DNA damage and repair effects on 3D genome organization," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    7. Christian H. Haering & Ana-Maria Farcas & Prakash Arumugam & Jean Metson & Kim Nasmyth, 2008. "The cohesin ring concatenates sister DNA molecules," Nature, Nature, vol. 454(7202), pages 297-301, July.
    8. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veysel Oğulcan Kaya & Ogün Adebali, 2025. "UV-induced reorganization of 3D genome mediates DNA damage response," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    2. Kim L. Luca & Pim M. J. Rullens & Magdalena A. Karpinska & Sandra S. Vries & Agnieszka Gacek-Matthews & Lőrinc S. Pongor & Gaëlle Legube & Joanna W. Jachowicz & A. Marieke Oudelaar & Jop Kind, 2024. "Genome-wide profiling of DNA repair proteins in single cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Fengchao Lang & Karambir Kaur & Haiqing Fu & Javeria Zaheer & Diego Luis Ribeiro & Mirit I. Aladjem & Chunzhang Yang, 2025. "D-2-hydroxyglutarate impairs DNA repair through epigenetic reprogramming," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Benjamin M. Stinson & Sean M. Carney & Johannes C. Walter & Joseph J. Loparo, 2024. "Structural role for DNA Ligase IV in promoting the fidelity of non-homologous end joining," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Samah W. Awwad & Colm Doyle & Josie Coulthard & Aldo S. Bader & Nadia Gueorguieva & Simon Lam & Vipul Gupta & Rimma Belotserkovskaya & Tuan-Anh Tran & Shankar Balasubramanian & Stephen P. Jackson, 2025. "KLF5 loss sensitizes cells to ATR inhibition and is synthetic lethal with ARID1A deficiency," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    10. Jérémy Sandoz & Max Cigrang & Amélie Zachayus & Philippe Catez & Lise-Marie Donnio & Clèmence Elly & Jadwiga Nieminuszczy & Pietro Berico & Cathy Braun & Sergey Alekseev & Jean-Marc Egly & Wojciech Ni, 2023. "Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Qin Qin & Jing Lu & Hongcheng Zhu & Liping Xu & Hongyan Cheng & Liangliang Zhan & Xi Yang & Chi Zhang & Xinchen Sun, 2014. "PARP-1 Val762Ala Polymorphism and Risk of Cancer: A Meta-Analysis Based on 39 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-12, May.
    13. Wen-Qi Ma & Xi-Qiong Han & Xin Wang & Ying Wang & Yi Zhu & Nai-Feng Liu, 2016. "Associations between XRCC1 Gene Polymorphisms and Coronary Artery Disease: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    14. Andreas Luttens & Duc Duy Vo & Emma R. Scaletti & Elisée Wiita & Ingrid Almlöf & Olov Wallner & Jonathan Davies & Sara Košenina & Liuzhen Meng & Maeve Long & Oliver Mortusewicz & Geoffrey Masuyer & Fl, 2025. "Virtual fragment screening for DNA repair inhibitors in vast chemical space," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    15. Zhang, L.W. & Cheng, Y.M. & Liew, K.M., 2014. "Mathematical modeling of p53 pulses in G2 phase with DNA damage," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1000-1010.
    16. Pieranna Chiarella & Pasquale Capone & Renata Sisto, 2023. "Contribution of Genetic Polymorphisms in Human Health," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
    17. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Anthony Veltri & Christopher M. R. Lang & Gaia Cangiotti & Chim Kei Chan & Wen-Hui Lien, 2022. "ROR2 regulates self-renewal and maintenance of hair follicle stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Alessio Magis & Michaela Limmer & Venkat Mudiyam & David Monchaud & Stefan Juranek & Katrin Paeschke, 2023. "UV-induced G4 DNA structures recruit ZRF1 which prevents UV-induced senescence," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56086-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.