IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55751-4.html
   My bibliography  Save this article

Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung

Author

Listed:
  • Tianchuan Zhu

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

  • Yuchen Xiao

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

  • Zhenxing Chen

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

  • Hanxi Ding

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

  • Shoudeng Chen

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

  • Guanmin Jiang

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

  • Xi Huang

    (The Fifth Affiliated Hospital of Sun Yat-sen University)

Abstract

Suppression of chimeric antigen receptor-modified T (CAR-T) cells by the immunosuppressive tumor microenvironment remains a major barrier to their efficacy against solid tumors. To address this, we develop an anti-PD-L1-expressing nanovesicle loaded with the STING agonist cGAMP (aPD-L1 NVs@cGAMP) to remodel the tumor microenvironment and thereby enhance CAR-T cell activity. Following pulmonary delivery, the nanovesicles rapidly accumulate in the lung and selectively deliver STING agonists to PD-L1-overexpressing cells via the PD-1/PD-L1 interaction. This targeted delivery effectively avoids the systemic inflammation and poor cellular uptake that plague free STING agonists. Internalized STING agonists trigger STING signaling and induce interferon responses, which diminish immunosuppressive cell populations such as myeloid-derived suppressor cells in the tumor microenvironment and promote CAR-T cell infiltration. Importantly, the anti-PD-L1 single chain variable fragment on the nanovesicle surface blocks PD-L1 upregulation induced by STING agonists and prevents CAR-T cell exhaustion. In both orthotopic lung cancer and lung metastasis model, combined therapy with CAR-T cells and aPD-L1 NVs@cGAMP potently inhibits tumor growth and prevents recurrence. Therefore, aPD-L1 NVs@cGAMP is expected to serve as an effective CAR-T cell enhancer to improve the efficacy of CAR-T cells against solid tumors.

Suggested Citation

  • Tianchuan Zhu & Yuchen Xiao & Zhenxing Chen & Hanxi Ding & Shoudeng Chen & Guanmin Jiang & Xi Huang, 2025. "Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55751-4
    DOI: 10.1038/s41467-024-55751-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55751-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55751-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Louai Labanieh & Crystal L. Mackall, 2023. "CAR immune cells: design principles, resistance and the next generation," Nature, Nature, vol. 614(7949), pages 635-648, February.
    2. Peng Zhang & Aida Rashidi & Junfei Zhao & Caylee Silvers & Hanxiang Wang & Brandyn Castro & Abby Ellingwood & Yu Han & Aurora Lopez-Rosas & Markella Zannikou & Crismita Dmello & Rebecca Levine & Ting , 2023. "STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Elisa Landoni & Mark G. Woodcock & Gabriel Barragan & Gabriele Casirati & Vincenzo Cinella & Simone Stucchi & Leah M. Flick & Tracy A. Withers & Hanna Hudson & Giulia Casorati & Paolo Dellabona & Piet, 2024. "IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Hongxia Li & Emily B. Harrison & Huizhong Li & Koichi Hirabayashi & Jing Chen & Qi-Xiang Li & Jared Gunn & Jared Weiss & Barbara Savoldo & Joel S. Parker & Chad V. Pecot & Gianpietro Dotti & Hongwei D, 2022. "Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhiren Wang & Wenpan Li & Yanhao Jiang & Tuyen Ba Tran & Leyla Estrella Cordova & Jinha Chung & Minhyeok Kim & Georg Wondrak & Jennifer Erdrich & Jianqin Lu, 2023. "Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Lixue Wang & Guosheng Wang & Wenjun Mao & Yundi Chen & Md. Mofizur Rahman & Chuandong Zhu & Peter M. Prisinzano & Bo Kong & Jing Wang & Luke P. Lee & Yuan Wan, 2023. "Bioinspired engineering of fusogen and targeting moiety equipped nanovesicles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yao Wang & Chuan Tong & Hanren Dai & Zhiqiang Wu & Xiao Han & Yelei Guo & Deyun Chen & Jianshu Wei & Dongdong Ti & Zongzhi Liu & Qian Mei & Xiang Li & Liang Dong & Jing Nie & Yajing Zhang & Weidong Ha, 2021. "Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Ugur Uslu & Lijun Sun & Sofia Castelli & Amanda V. Finck & Charles-Antoine Assenmacher & Regina M. Young & Zhijian J. Chen & Carl H. June, 2024. "The STING agonist IMSA101 enhances chimeric antigen receptor T cell function by inducing IL-18 secretion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Giulia Agliardi & Anna Rita Liuzzi & Alastair Hotblack & Donatella Feo & Nicolás Núñez & Cassandra L. Stowe & Ekaterina Friebel & Francesco Nannini & Lukas Rindlisbacher & Thomas A. Roberts & Rajiv Ra, 2021. "Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Miriam Y. Kim & Reyka Jayasinghe & Jessica M. Devenport & Julie K. Ritchey & Michael P. Rettig & Julie O’Neal & Karl W. Staser & Krista M. Kennerly & Alun J. Carter & Feng Gao & Byung Ha Lee & Matthew, 2022. "A long-acting interleukin-7, rhIL-7-hyFc, enhances CAR T cell expansion, persistence, and anti-tumor activity," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Xiaona Chen & Fanchao Meng & Yiting Xu & Tongyu Li & Xiaolong Chen & Hangxiang Wang, 2023. "Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songlei Zhou & Yukun Huang & Yu Chen & Yipu Liu & Laozhi Xie & Yang You & Shiqiang Tong & Jianpei Xu & Gan Jiang & Qingxiang Song & Ni Mei & Fenfen Ma & Xiaoling Gao & Hongzhuan Chen & Jun Chen, 2023. "Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Yun-Lan Li & Hai-Ling Wang & Zhong-Hong Zhu & Yu-Feng Wang & Fu-Pei Liang & Hua-Hong Zou, 2024. "Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Bihui Cao & Manting Liu & Lu Wang & Kangshun Zhu & Mingyue Cai & Xiaopei Chen & Yunfei Feng & Shuo Yang & Shengyu Fu & Cheng Zhi & Xiaodie Ye & Jian Zhang & Zhiru Zhang & Xin Yang & Ming Zhao & Qingde, 2022. "Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Sara Orehek & Taja Železnik Ramuta & Duško Lainšček & Špela Malenšek & Martin Šala & Mojca Benčina & Roman Jerala & Iva Hafner-Bratkovič, 2024. "Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Wei Yang & Zhizi Feng & Xinning Lai & Jianwen Li & Zhengwei Cao & Fangchao Jiang & Fanghui Chen & Shuyue Zhan & Feng Kong & Li Yang & Yong Teng & Wendy T. Watford & Gang Zhou & Jin Xie, 2024. "Calcium nanoparticles target and activate T cells to enhance anti-tumor function," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Shuhong Li & Licai Shi & Lijun Zhao & Qiaoru Guo & Jun Li & Ze-lin Liu & Zhi Guo & Yu J. Cao, 2024. "Split-design approach enhances the therapeutic efficacy of ligand-based CAR-T cells against multiple B-cell malignancies," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Tomás A. Martins & Deniz Kaymak & Nazanin Tatari & Fiona Gerster & Sabrina Hogan & Marie-Françoise Ritz & Valerio Sabatino & Ronja Wieboldt & Ewelina M. Bartoszek & Marta McDaid & Alexandra Gerber & A, 2024. "Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    8. Kaiyuan Wang & Xuanbo Zhang & Hao Ye & Xia Wang & Zhijin Fan & Qi Lu & Songhao Li & Jian Zhao & Shunzhe Zheng & Zhonggui He & Qianqian Ni & Xiaoyuan Chen & Jin Sun, 2023. "Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Sameeha Jilani & Justin D. Saco & Edurne Mugarza & Aleida Pujol-Morcillo & Jeffrey Chokry & Clement Ng & Gabriel Abril-Rodriguez & David Berger-Manerio & Ami Pant & Jane Hu & Rubi Gupta & Agustin Vega, 2024. "CAR-T cell therapy targeting surface expression of TYRP1 to treat cutaneous and rare melanoma subtypes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Fengqi Qiu & Peishan Jiang & Guiheng Zhang & Jie An & Kexin Ruan & Xiaowen Lyu & Jianya Zhou & Wanqiang Sheng, 2024. "Priming with LSD1 inhibitors promotes the persistence and antitumor effect of adoptively transferred T cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Guillem Pascual-Pasto & Brendan McIntyre & Margaret G. Hines & Anna M. Giudice & Laura Garcia-Gerique & Jennifer Hoffmann & Pamela Mishra & Stephanie Matlaga & Simona Lombardi & Rawan Shraim & Patrick, 2024. "CAR T-cell-mediated delivery of bispecific innate immune cell engagers for neuroblastoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Xiaona Chen & Fanchao Meng & Yiting Xu & Tongyu Li & Xiaolong Chen & Hangxiang Wang, 2023. "Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Jiaojiao Xu & Zhe Li & Qinli Tong & Sihang Zhang & Jianchen Fang & Aihua Wu & Guoguang Wei & Chen Zhang & Sheng Yu & Binbin Zheng & Hongzheng Lin & Xueling Liao & Zeyu Xiao & Wei Lu, 2025. "CD133+PD-L1+ cancer cells confer resistance to adoptively transferred engineered macrophage-based therapy in melanoma," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    14. Justin A. Guerrero & Dorota D. Klysz & Yiyun Chen & Meena Malipatlolla & Jameel Lone & Carley Fowler & Lucille Stuani & Audre May & Malek Bashti & Peng Xu & Jing Huang & Basil Michael & Kévin Contrepo, 2024. "GLUT1 overexpression in CAR-T cells induces metabolic reprogramming and enhances potency," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Zhiren Wang & Wenpan Li & Yanhao Jiang & Jonghan Park & Karina Marie Gonzalez & Xiangmeng Wu & Qing-Yu Zhang & Jianqin Lu, 2024. "Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Verena Turco & Kira Pfleiderer & Jessica Hunger & Natalie K. Horvat & Kianush Karimian-Jazi & Katharina Schregel & Manuel Fischer & Gianluca Brugnara & Kristine Jähne & Volker Sturm & Yannik Streibel , 2023. "T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Yoshitaka Adachi & Seitaro Terakura & Masahide Osaki & Yusuke Okuno & Yoshitaka Sato & Ken Sagou & Yuki Takeuchi & Hirofumi Yokota & Kanae Imai & Peter Steinberger & Judith Leitner & Ryo Hanajiri & Ma, 2024. "Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Jiaqi Yan & Xiaodong Ma & Danna Liang & Meixin Ran & Dongdong Zheng & Xiaodong Chen & Shichong Zhou & Weijian Sun & Xian Shen & Hongbo Zhang, 2023. "An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Maxine S. Y. Lam & Jose Antonio Reales-Calderon & Jin Rong Ow & Joey J. Y. Aw & Damien Tan & Ragavi Vijayakumar & Erica Ceccarello & Tommaso Tabaglio & Yan Ting Lim & Wang Loo Chien & Fritz Lai & Anth, 2023. "G9a/GLP inhibition during ex vivo lymphocyte expansion increases in vivo cytotoxicity of engineered T cells against hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Jianwen Song & He Wang & Xue Meng & Wen Li & Ji Qi, 2024. "A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55751-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.