IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55748-z.html
   My bibliography  Save this article

Fluorine-expedited nitridation of layered perovskite Sr2TiO4 for visible-light-driven photocatalytic overall water splitting

Author

Listed:
  • Jinxing Yu

    (Tongji University)

  • Jie Huang

    (72 Wenhua Road
    72 Wenhua Road)

  • Ronghua Li

    (University of Electronic Science and Technology of China)

  • Yanbo Li

    (University of Electronic Science and Technology of China)

  • Gang Liu

    (72 Wenhua Road
    72 Wenhua Road)

  • Xiaoxiang Xu

    (Tongji University)

Abstract

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor Sr2TiO4 for visible-light-driven photocatalytic overall water splitting. Compared to the conventional nitridation approach, F-expedited nitridation introduces the desirable integration of a high concentration of N dopant for strong visible light absorption and a low concentration of defects (i.e. Ti3+ and oxygen vacancies) for effective separation of photocarriers. After being coated with Ti-oxyhydroxide protection layer and deposited with RhCrOy cocatalyst, the product from F-expedited nitridation can stably run photocatalytic overall water splitting with apparent quantum efficiency of 0.39% at 420 ± 20 nm and solar-to-hydrogen efficiency of 0.028%. These findings justify the effectiveness of F-expedited nitridation strategy and serve as a guidance to upgrade the photocatalytic activity of many other wide-bandgap semiconductors.

Suggested Citation

  • Jinxing Yu & Jie Huang & Ronghua Li & Yanbo Li & Gang Liu & Xiaoxiang Xu, 2025. "Fluorine-expedited nitridation of layered perovskite Sr2TiO4 for visible-light-driven photocatalytic overall water splitting," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55748-z
    DOI: 10.1038/s41467-024-55748-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55748-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55748-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Huang & Yuyang Kang & Jianan Liu & Tingting Yao & Jianhang Qiu & Peipei Du & Biaohong Huang & Weijin Hu & Yan Liang & Tengfeng Xie & Chunlin Chen & Li-Chang Yin & Lianzhou Wang & Hui-Ming Cheng & , 2023. "Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hiroshi Nishiyama & Taro Yamada & Mamiko Nakabayashi & Yoshiki Maehara & Masaharu Yamaguchi & Yasuko Kuromiya & Yoshie Nagatsuma & Hiromasa Tokudome & Seiji Akiyama & Tomoaki Watanabe & Ryoichi Narush, 2021. "Photocatalytic solar hydrogen production from water on a 100-m2 scale," Nature, Nature, vol. 598(7880), pages 304-307, October.
    3. Ruotian Chen & Zefeng Ren & Yu Liang & Guanhua Zhang & Thomas Dittrich & Runze Liu & Yang Liu & Yue Zhao & Shan Pang & Hongyu An & Chenwei Ni & Panwang Zhou & Keli Han & Fengtao Fan & Can Li, 2022. "Spatiotemporal imaging of charge transfer in photocatalyst particles," Nature, Nature, vol. 610(7931), pages 296-301, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jie Huang & Yuyang Kang & Jianan Liu & Tingting Yao & Jianhang Qiu & Peipei Du & Biaohong Huang & Weijin Hu & Yan Liang & Tengfeng Xie & Chunlin Chen & Li-Chang Yin & Lianzhou Wang & Hui-Ming Cheng & , 2023. "Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    5. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Hongguang Zhang & Asfaw Yohannes & Heng Zhao & Zheng Li & Yejun Xiao & Xi Cheng & Hui Wang & Zhangkang Li & Samira Siahrostami & Md Golam Kibria & Jinguang Hu, 2025. "Photocatalytic asymmetric C-C coupling for CO2 reduction on dynamically reconstructed Ruδ+-O/Ru0-O sites," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Mahdi Takach & Mirza Sarajlić & Dorothee Peters & Michael Kroener & Frank Schuldt & Karsten von Maydell, 2022. "Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns," Energies, MDPI, vol. 15(4), pages 1-17, February.
    8. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Lu, Yawei & Fan, Rujia & Wang, Zhirong & Cao, Xingyan & Guo, Wenjie, 2024. "The influence of hydrogen concentration on the characteristic of explosion venting: Explosion pressure, venting flame and flow field microstructure," Energy, Elsevier, vol. 293(C).
    14. Jining Guo & Yuecheng Zhang & Ali Zavabeti & Kaifei Chen & Yalou Guo & Guoping Hu & Xiaolei Fan & Gang Kevin Li, 2022. "Hydrogen production from the air," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Yan Guo & Bowen Zhu & Chuyang Y. Tang & Qixin Zhou & Yongfa Zhu, 2024. "Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Spandana Gonuguntla & Bhavya Jaksani & Aparna Jamma & Chandra Shobha Vennapoosa & Debabrata Chatterjee & Ujjwal Pal, 2024. "Design principle of anti‐corrosive photocatalyst for large‐scale hydrogen production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    18. Lihua Lin & Yiwen Ma & Junie Jhon M. Vequizo & Mamiko Nakabayashi & Chen Gu & Xiaoping Tao & Hiroaki Yoshida & Yuriy Pihosh & Yuta Nishina & Akira Yamakata & Naoya Shibata & Takashi Hisatomi & Tsuyosh, 2024. "Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Cruz, Pedro L. & Dufour, Javier & Iribarren, Diego, 2023. "Conceptualization and application of an environmental dashboard to benchmark technical aspects in photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 210(C), pages 424-430.
    20. Xiangdong Zhu & Litao Lin & Mingyue Pang & Chao Jia & Longlong Xia & Guosheng Shi & Shicheng Zhang & Yuanda Lu & Liming Sun & Fengbo Yu & Jie Gao & Zhelin He & Xuan Wu & Aodi Li & Liang Wang & Meiling, 2024. "Continuous and low-carbon production of biomass flash graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55748-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.