IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55640-w.html
   My bibliography  Save this article

C–C bond coupling with sp3 C–H bond via active intermediates from CO2 hydrogenation

Author

Listed:
  • Qianli Ma

    (Lanzhou University
    Lanzhou University)

  • Jianian Cheng

    (Lanzhou University
    Lanzhou University)

  • Xiaojing Wu

    (Lanzhou University
    Lanzhou University)

  • Jin Xie

    (Lanzhou University
    Lanzhou University)

  • Ruihui Zhang

    (Lanzhou University
    Lanzhou University)

  • Zhihe Mao

    (Lanzhou University
    Lanzhou University)

  • Hongfang Yang

    (Lanzhou University
    Lanzhou University)

  • Wenjun Fan

    (Chinese Academy of Sciences)

  • Jianrong Zeng

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Johannes Hendrik Bitter

    (Wageningen University)

  • Guanna Li

    (Wageningen University)

  • Zelong Li

    (Lanzhou University
    Lanzhou University
    Chinese Academy of Sciences)

  • Can Li

    (Lanzhou University
    Lanzhou University
    Chinese Academy of Sciences)

Abstract

Compared to the sluggish kinetics observed in methanol-mediated side-chain alkylation of methyl groups with sp3 C–H bonds, CO2 hydrogenation emerges as a sustainable alternative strategy, yet it remains a challenge. Here, as far as we know, it is first reported that using CO2 hydrogenation replacing methanol can conduct the side-chain alkylation of 4-methylpyridine (MEPY) over a binary metal oxide-zeolite Zn40Zr60O/CsX tandem catalyst (ZZO/CsX). This ZZO/CsX catalyst can achieve 19.6% MEPY single-pass conversion and 82% 4-ethylpyridine (ETPY) selectivity by using CO2 hydrogenation, which is 6.5 times more active than methanol as an alkylation agent. The excellent catalytic performance is realized on the basis of the dual functions of the tandem catalyst: hydrogenation of CO2 on the ZZO and activation of sp3 C–H bond and C–C bond coupling on the CsX zeolite. The thermodynamic and kinetic coupling between the tandem reactions enables the highly efficient CO2 hydrogenation and C–C bond coupling. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations suggest that the CHxO* (CH2O*) species, rather than methanol produced from CO2 hydrogenation, is the key intermediate to achieve the C–C bond coupling.

Suggested Citation

  • Qianli Ma & Jianian Cheng & Xiaojing Wu & Jin Xie & Ruihui Zhang & Zhihe Mao & Hongfang Yang & Wenjun Fan & Jianrong Zeng & Johannes Hendrik Bitter & Guanna Li & Zelong Li & Can Li, 2025. "C–C bond coupling with sp3 C–H bond via active intermediates from CO2 hydrogenation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55640-w
    DOI: 10.1038/s41467-024-55640-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55640-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55640-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    2. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    3. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    5. Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    6. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    7. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    9. Xinyang Gao & Yongjun Jiang & Jiyuan Liu & Guoshuai Shi & Chunlei Yang & Qinshang Xu & Yuanqing Yun & Yuluo Shen & Mingwei Chang & Chenyuan Zhu & Tingyu Lu & Yin Wang & Guanchen Du & Shuzhou Li & Shen, 2024. "Intermediate-regulated dynamic restructuring at Ag-Cu biphasic interface enables selective CO2 electroreduction to C2+ fuels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    12. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    13. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    14. Xianjin Shi & Wei Peng & Yu Huang & Chao Gao & Yiman Fu & Zhenyu Wang & Leting Yang & Zixuan Zhu & Junji Cao & Fei Rao & Gangqiang Zhu & Shuncheng Lee & Yujie Xiong, 2024. "Integrable utilization of intermittent sunlight and residual heat for on-demand CO2 conversion with water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Wu Yang & Zhang Min & Mingxing Yang & Jun Yan, 2022. "Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development—An Overview," IJERPH, MDPI, vol. 19(21), pages 1-28, October.
    16. Thomas Deschamps & Mohamed Kanniche & Laurent Grandjean & Olivier Authier, 2022. "Modeling of Vacuum Temperature Swing Adsorption for Direct Air Capture Using Aspen Adsorption," Clean Technol., MDPI, vol. 4(2), pages 1-18, April.
    17. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    18. Jiandong Chen & Ming Gao & Shulei Cheng & Yiyin Xu & Malin Song & Yu Liu & Wenxuan Hou & Shuhong Wang, 2022. "Evaluation and drivers of global low-carbon economies based on satellite data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    19. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55640-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.