IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55580-5.html
   My bibliography  Save this article

Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS

Author

Listed:
  • Zhen Miao

    (University of Pennsylvania
    University of Pennsylvania)

  • Jianqiao Wang

    (Harvard T.H. Chan School of Health
    Tsinghua University)

  • Kernyu Park

    (University of Pennsylvania)

  • Da Kuang

    (University of Pennsylvania)

  • Junhyong Kim

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

Abstract

Single cell ATAC-seq (scATAC-seq) experimental designs have become increasingly complex, with multiple factors that might affect chromatin accessibility, including genotype, cell type, tissue of origin, sample location, batch, etc., whose compound effects are difficult to test by existing methods. In addition, current scATAC-seq data present statistical difficulties due to their sparsity and variations in individual sequence capture. To address these problems, we present a zero-adjusted statistical model, Probability model of Accessible Chromatin of Single cells (PACS), that allows complex hypothesis testing of accessibility-modulating factors while accounting for sparse and incomplete data. For differential accessibility analysis, PACS controls the false positive rate and achieves a 17% to 122% higher power on average than existing tools. We demonstrate the effectiveness of PACS through several analysis tasks, including supervised cell type annotation, compound hypothesis testing, batch effect correction, and spatiotemporal modeling. We apply PACS to datasets from various tissues and show its ability to reveal previously undiscovered insights in scATAC-seq data.

Suggested Citation

  • Zhen Miao & Jianqiao Wang & Kernyu Park & Da Kuang & Junhyong Kim, 2025. "Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55580-5
    DOI: 10.1038/s41467-024-55580-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55580-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55580-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55580-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.