Comprehensive analysis of single cell ATAC-seq data with SnapATAC
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-21583-9
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Shengen Shawn Hu & Lin Liu & Qi Li & Wenjing Ma & Michael J. Guertin & Clifford A. Meyer & Ke Deng & Tingting Zhang & Chongzhi Zang, 2022. "Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Seong Kyu Han & Michelle T. McNulty & Christopher J. Benway & Pei Wen & Anya Greenberg & Ana C. Onuchic-Whitford & Dongkeun Jang & Jason Flannick & Noël P. Burtt & Parker C. Wilson & Benjamin D. Humph, 2023. "Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Hongru Hu & Gerald Quon, 2024. "scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Sudha Sunil Rajderkar & Kitt Paraiso & Maria Luisa Amaral & Michael Kosicki & Laura E. Cook & Fabrice Darbellay & Cailyn H. Spurrell & Marco Osterwalder & Yiwen Zhu & Han Wu & Sarah Yasmeen Afzal & Ma, 2024. "Dynamic enhancer landscapes in human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
- Zhijian Li & Christoph Kuppe & Susanne Ziegler & Mingbo Cheng & Nazanin Kabgani & Sylvia Menzel & Martin Zenke & Rafael Kramann & Ivan G. Costa, 2021. "Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- Kai Cao & Qiyu Gong & Yiguang Hong & Lin Wan, 2022. "A unified computational framework for single-cell data integration with optimal transport," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Samir Rachid Zaim & Mark-Phillip Pebworth & Imran McGrath & Lauren Okada & Morgan Weiss & Julian Reading & Julie L. Czartoski & Troy R. Torgerson & M. Juliana McElrath & Thomas F. Bumol & Peter J. Ske, 2024. "MOCHA’s advanced statistical modeling of scATAC-seq data enables functional genomic inference in large human cohorts," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
- Alan Yue Yang Teo & Jordan W. Squair & Gregoire Courtine & Michael A. Skinnider, 2024. "Best practices for differential accessibility analysis in single-cell epigenomics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Christopher T. Rhodes & Joyce J. Thompson & Apratim Mitra & Dhanya Asokumar & Dongjin R. Lee & Daniel J. Lee & Yajun Zhang & Eva Jason & Ryan K. Dale & Pedro P. Rocha & Timothy J. Petros, 2022. "An epigenome atlas of neural progenitors within the embryonic mouse forebrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
- Lei Xiong & Kang Tian & Yuzhe Li & Weixi Ning & Xin Gao & Qiangfeng Cliff Zhang, 2022. "Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21583-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.