IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55221-x.html
   My bibliography  Save this article

Unveiling pelagic-benthic coupling associated with the biological carbon pump in the Fram Strait (Arctic Ocean)

Author

Listed:
  • Simon Ramondenc

    (Helmholtz Centre for Polar and Marine Research
    University of Bremen)

  • Damien Eveillard

    (Ecole Centrale Nantes
    FR2022/Tara Oceans GOSEE)

  • Katja Metfies

    (Helmholtz Centre for Polar and Marine Research)

  • Morten H. Iversen

    (Helmholtz Centre for Polar and Marine Research
    University of Bremen)

  • Eva-Maria Nöthig

    (Helmholtz Centre for Polar and Marine Research)

  • Dieter Piepenburg

    (Helmholtz Centre for Polar and Marine Research)

  • Christiane Hasemann

    (Helmholtz Centre for Polar and Marine Research)

  • Thomas Soltwedel

    (Helmholtz Centre for Polar and Marine Research)

Abstract

Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems. Chaetoceros socialis, sea-ice diatoms, Radiolaria, and Chaetognatha are critical components of vertical carbon flux to 200 m depth. In contrast, the diatom C. socialis alone is essential for the amount of organic carbon reaching the seafloor. Spatiotemporal changes in community composition show decreasing diatom abundance during warm anomalies, which would reduce the efficiency of a diatom-driven biological carbon pump. Interestingly, several parasites are also tightly associated with carbon flux and show a strong vertical connectivity, suggesting a potential role in sedimentation processes involving their hosts, especially through interactions with resting spores, which could have implications for pelagic-benthic coupling and overall ecosystem functioning.

Suggested Citation

  • Simon Ramondenc & Damien Eveillard & Katja Metfies & Morten H. Iversen & Eva-Maria Nöthig & Dieter Piepenburg & Christiane Hasemann & Thomas Soltwedel, 2025. "Unveiling pelagic-benthic coupling associated with the biological carbon pump in the Fram Strait (Arctic Ocean)," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55221-x
    DOI: 10.1038/s41467-024-55221-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55221-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55221-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mevik, Björn-Helge & Wehrens, Ron, 2007. "The pls Package: Principal Component and Partial Least Squares Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 18(i02).
    2. Lionel Guidi & Samuel Chaffron & Lucie Bittner & Damien Eveillard & Abdelhalim Larhlimi & Simon Roux & Youssef Darzi & Stephane Audic & Léo Berline & Jennifer R. Brum & Luis Pedro Coelho & Julio Cesar, 2016. "Plankton networks driving carbon export in the oligotrophic ocean," Nature, Nature, vol. 532(7600), pages 465-470, April.
    3. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lê Cao Kim-Anh & Rossouw Debra & Robert-Granié Christèle & Besse Philippe, 2008. "A Sparse PLS for Variable Selection when Integrating Omics Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-32, November.
    2. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    3. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    4. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    5. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    6. Elton Mammadov & Michael Denk & Frank Riedel & Cezary Kaźmierowski & Karolina Lewinska & Remigiusz Łukowiak & Witold Grzebisz & Amrakh I. Mamedov & Cornelia Glaesser, 2022. "Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains," Land, MDPI, vol. 11(3), pages 1-24, March.
    7. Giacomo Crucil & Fabio Castaldi & Emilien Aldana-Jague & Bas van Wesemael & Andy Macdonald & Kristof Van Oost, 2019. "Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    8. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    9. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    10. Merola, Giovanni Maria & Chen, Gemai, 2019. "Projection sparse principal component analysis: An efficient least squares method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 366-382.
    11. Maurizio Vichi, 2017. "Disjoint factor analysis with cross-loadings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 563-591, September.
    12. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    13. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    14. Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Tomasz Wołowiec & Marta Cholewa-Wiktor & Piotr Bednarczuk, 2021. "Application of Electrical Tomography Imaging Using Machine Learning Methods for the Monitoring of Flood Embankments Leaks," Energies, MDPI, vol. 14(23), pages 1-35, December.
    15. Robert Pater & Łukasz Cywiński & Ruslan Harasym & Kazimierz Tarchalski, 2018. "Intangible capital and the economic growth in Poland," Bank i Kredyt, Narodowy Bank Polski, vol. 49(2), pages 93-114.
    16. Natallia Pashkevich & Darek Haftor & Mikael Karlsson & Soumitra Chowdhury, 2019. "Sustainability through the Digitalization of Industrial Machines: Complementary Factors of Fuel Consumption and Productivity for Forklifts with Sensors," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    17. Charlotte Höpker & Klaus Dittert & Hans-Werner Olfs, 2025. "On-Farm Application of Near-Infrared Spectroscopy for the Determination of Nutrients in Liquid Organic Manures: Challenges and Opportunities," Agriculture, MDPI, vol. 15(2), pages 1-15, January.
    18. Zhao, Ting & Yang, Zhenshan, 2017. "Towards green growth and management: Relative efficiency and gaps of Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 481-494.
    19. Miles Grafton & Therese Kaul & Alan Palmer & Peter Bishop & Michael White, 2019. "Technical Note: Regression Analysis of Proximal Hyperspectral Data to Predict Soil pH and Olsen P," Agriculture, MDPI, vol. 9(3), pages 1-18, March.
    20. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55221-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.