IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8081-d693884.html
   My bibliography  Save this article

Application of Electrical Tomography Imaging Using Machine Learning Methods for the Monitoring of Flood Embankments Leaks

Author

Listed:
  • Tomasz Rymarczyk

    (Research and Development Center, Netrix S.A., 20-704 Lublin, Poland
    Faculty of Transport and Computer Science, University of Economics and Innovation, 20-209 Lublin, Poland)

  • Krzysztof Król

    (Research and Development Center, Netrix S.A., 20-704 Lublin, Poland
    Faculty of Transport and Computer Science, University of Economics and Innovation, 20-209 Lublin, Poland)

  • Edward Kozłowski

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

  • Tomasz Wołowiec

    (Faculty of Administration and Social Sciences, University of Economics and Innovation, 20-209 Lublin, Poland)

  • Marta Cholewa-Wiktor

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

  • Piotr Bednarczuk

    (Faculty of Transport and Computer Science, University of Economics and Innovation, 20-209 Lublin, Poland)

Abstract

This paper presents an application for the monitoring of leaks in flood embankments by reconstructing images in electrical tomography using logistic regression machine learning methods with elastic net regularisation, PCA and wave preprocessing. The main advantage of this solution is to obtain a more accurate spatial conductivity distribution inside the studied object. The described method assumes a learning system consisting of multiple equations working in parallel, where each equation creates a single point in the output image. This enables the efficient reconstruction of spatial images. The research focused on preparing, developing, and comparing algorithms and models for data analysis and reconstruction using a proprietary electrical tomography solution. A reliable measurement solution with sensors and machine learning methods makes it possible to analyse damage and leaks, leading to effective information and the eventual prevention of risks. The applied methods enable the improved resolution of the reconstructed images and the possibility to obtain them in real-time, which is their distinguishing feature compared to other methods. The use of electrical tomography in combination with specific methods for image reconstruction allows for an accurate spatial assessment of leaks and damage to dikes.

Suggested Citation

  • Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Tomasz Wołowiec & Marta Cholewa-Wiktor & Piotr Bednarczuk, 2021. "Application of Electrical Tomography Imaging Using Machine Learning Methods for the Monitoring of Flood Embankments Leaks," Energies, MDPI, vol. 14(23), pages 1-35, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8081-:d:693884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mevik, Björn-Helge & Wehrens, Ron, 2007. "The pls Package: Principal Component and Partial Least Squares Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 18(i02).
    2. Tomasz Rymarczyk & Grzegorz Kłosowski & Anna Hoła & Jan Sikora & Tomasz Wołowiec & Paweł Tchórzewski & Stanisław Skowron, 2021. "Comparison of Machine Learning Methods in Electrical Tomography for Detecting Moisture in Building Walls," Energies, MDPI, vol. 14(10), pages 1-22, May.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Liu & Jiayuan Yu & Yuanjin Zheng & Chao Liu & Yanxiong Yang & Yunfei Qi, 2022. "A Nonlinear Multigrid Method for the Parameter Identification Problem of Partial Differential Equations with Constraints," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    2. Olena Borysiak & Tomasz Wołowiec & Grzegorz Gliszczyński & Vasyl Brych & Oleksandr Dluhopolskyi, 2022. "Smart Transition to Climate Management of the Green Energy Transmission Chain," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    3. Bartosz Przysucha & Dariusz Wójcik & Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Marcin Gąsior, 2023. "Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net," Energies, MDPI, vol. 16(3), pages 1-22, February.
    4. Olena Borysiak & Łukasz Skowron & Vasyl Brych & Volodymyr Manzhula & Oleksandr Dluhopolskyi & Monika Sak-Skowron & Tomasz Wołowiec, 2022. "Towards Climate Management of District Heating Enterprises’ Innovative Resources," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    2. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    3. Fitzpatrick, Trevor & Mues, Christophe, 2021. "How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments," European Journal of Operational Research, Elsevier, vol. 294(2), pages 711-722.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    8. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    9. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    10. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    11. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    12. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    13. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    14. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    15. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    16. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    17. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    19. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    20. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8081-:d:693884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.