IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i3p55-d214377.html
   My bibliography  Save this article

Technical Note: Regression Analysis of Proximal Hyperspectral Data to Predict Soil pH and Olsen P

Author

Listed:
  • Miles Grafton

    (School of Agriculture and Environment, Massey University, Private Bag, Palmerston North 4442, New Zealand)

  • Therese Kaul

    (School of Agriculture and Environment, Massey University, Private Bag, Palmerston North 4442, New Zealand)

  • Alan Palmer

    (School of Agriculture and Environment, Massey University, Private Bag, Palmerston North 4442, New Zealand)

  • Peter Bishop

    (School of Agriculture and Environment, Massey University, Private Bag, Palmerston North 4442, New Zealand)

  • Michael White

    (Ravensdown Fertiliser Ltd., P.O. Box 1049, Christchurch 8042, New Zealand)

Abstract

This work examines two large data sets to demonstrate that hyperspectral proximal devices may be able to measure soil nutrient. One data set has 3189 soil samples from four hill country pastoral farms and the second data set has 883 soil samples taken from a stratified nested grid survey. These were regressed with spectra from a proximal hyperspectral device measured on the same samples. This aim was to obtain wavelengths, which may be proxy indicators for measurements of soil nutrients. Olsen P and pH were regressed with 2150 wave bands between 350 nm and 2500 nm to find wavebands, which were significant indicators. The 100 most significant wavebands for each proxy were used to regress both data sets. The regression equations from the smaller data set were used to predict the values of pH and Olsen P to validate the larger data set. The predictions from the equations from the smaller data set were as good as the regression analyses from the large data set when applied to it. This may mean that, in the future, hyperspectral analysis may be a proxy to soil chemical analysis; or increase the intensity of soil testing by finding markers of fertility cheaply in the field.

Suggested Citation

  • Miles Grafton & Therese Kaul & Alan Palmer & Peter Bishop & Michael White, 2019. "Technical Note: Regression Analysis of Proximal Hyperspectral Data to Predict Soil pH and Olsen P," Agriculture, MDPI, vol. 9(3), pages 1-18, March.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:3:p:55-:d:214377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/3/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/3/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mevik, Björn-Helge & Wehrens, Ron, 2007. "The pls Package: Principal Component and Partial Least Squares Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 18(i02).
    2. Therese Kaul & Miles Grafton, 2017. "Geostatistical Determination of Soil Noise and Soil Phosphorus Spatial Variability," Agriculture, MDPI, vol. 7(10), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    2. repec:jss:jstsof:23:i12 is not listed on IDEAS
    3. Elton Mammadov & Michael Denk & Frank Riedel & Cezary Kaźmierowski & Karolina Lewinska & Remigiusz Łukowiak & Witold Grzebisz & Amrakh I. Mamedov & Cornelia Glaesser, 2022. "Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains," Land, MDPI, vol. 11(3), pages 1-24, March.
    4. Giacomo Crucil & Fabio Castaldi & Emilien Aldana-Jague & Bas van Wesemael & Andy Macdonald & Kristof Van Oost, 2019. "Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    5. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    6. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).
    7. Samuel Trachsel & Thanda Dhliwayo & Lorena Gonzalez Perez & Jose Alberto Mendoza Lugo & Mathias Trachsel, 2019. "Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropica," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    8. Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Tomasz Wołowiec & Marta Cholewa-Wiktor & Piotr Bednarczuk, 2021. "Application of Electrical Tomography Imaging Using Machine Learning Methods for the Monitoring of Flood Embankments Leaks," Energies, MDPI, vol. 14(23), pages 1-35, December.
    9. Natallia Pashkevich & Darek Haftor & Mikael Karlsson & Soumitra Chowdhury, 2019. "Sustainability through the Digitalization of Industrial Machines: Complementary Factors of Fuel Consumption and Productivity for Forklifts with Sensors," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    10. Hernandez-Villafuerte, Karla Vanessa, 2011. "Relationship Between Spatial Price Transmission And Geographical Distance In Brazil," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114545, European Association of Agricultural Economists.
    11. Nunes Matthew A & Balding David J, 2010. "On Optimal Selection of Summary Statistics for Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, September.
    12. Wehrens, Ron & Franceschi, Pietro, 2012. "Meta-Statistics for Variable Selection: The R Package BioMark," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i10).
    13. Oladosu, Gbadebo A. & Leiby, Paul N. & Bowman, David C. & Uría-Martínez, Rocio & Johnson, Megan M., 2018. "Impacts of oil price shocks on the United States economy: A meta-analysis of the oil price elasticity of GDP for net oil-importing economies," Energy Policy, Elsevier, vol. 115(C), pages 523-544.
    14. Zhao, Ting & Yang, Zhenshan, 2017. "Towards green growth and management: Relative efficiency and gaps of Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 481-494.
    15. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    16. Radim VAŠÁT & Radka KODEŠOVÁ & Aleš KLEMENT & Ondřej JAKŠÍK, 2015. "Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 74-77.
    17. Carolina Olid & Valentí Rodellas & Gerard Rocher-Ros & Jordi Garcia-Orellana & Marc Diego-Feliu & Aaron Alorda-Kleinglass & David Bastviken & Jan Karlsson, 2022. "Groundwater discharge as a driver of methane emissions from Arctic lakes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Fitzpatrick, Trevor & Mues, Christophe, 2021. "How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments," European Journal of Operational Research, Elsevier, vol. 294(2), pages 711-722.
    19. Alamgir Kabir & Md Jahanur Rahman & Abu Ahmed Shamim & Rolf D W Klemm & Alain B Labrique & Mahbubur Rashid & Parul Christian & Keith P West Jr., 2017. "Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    20. Shianghau Wu & Jiannjong Guo, 2018. "PLS and OPLS Discriminatory Analyses on Political Sustainability in Taiwan," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    21. Opeoluwa FO & Sugnet L, 2017. "Biplots in Covariance Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(5), pages 147-154, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:3:p:55-:d:214377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.