IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54825-7.html
   My bibliography  Save this article

Ocean warming drives immediate mass loss from calving glaciers in the high Arctic

Author

Listed:
  • Ø. Foss

    (Norwegian Polar Institute)

  • J. Maton

    (Norwegian Polar Institute)

  • G. Moholdt

    (Norwegian Polar Institute)

  • L. S. Schmidt

    (University of Oslo)

  • D. A. Sutherland

    (University of Oregon)

  • I. Fer

    (University of Bergen
    Bjerknes Center for Climate Research)

  • F. Nilsen

    (The University Centre in Svalbard)

  • J. Kohler

    (Norwegian Polar Institute)

  • A. Sundfjord

    (Norwegian Polar Institute)

Abstract

Glaciers in the Arctic have lost considerable mass during the last two decades. About a third of the glaciers by area drains into the ocean, yet the mechanisms and drivers governing mass loss at glacier calving fronts are poorly constrained in part due to few long-term glacier-ocean observations. Here, we combine a detailed satellite-based record of calving front ablation for Austfonna, the largest ice cap on Svalbard, with in-situ ocean records from an offshore mooring and modelled freshwater runoff for the period 2018-2022. We show that submarine melting and calving occur almost exclusively in autumn for all types of outlet glaciers, even for the surging and fast-flowing glacier Storisstraumen. Ocean temperature controls the observed frontal ablation, whereas subglacial runoff of surface meltwater appears to have little direct impact on the total ablation. The seasonal warming of the offshore waters varies both in magnitude, depth and timing, suggesting a complex interplay between inflowing Atlantic-influenced water at depth and seasonally warmed surface water in the Barents Sea. The immediate response of frontal ablation to seasonal ocean warming suggests that marine-terminating glaciers in high Arctic regions exposed to Atlantification are prone to rapid changes that should be accounted for in future glacier projections.

Suggested Citation

  • Ø. Foss & J. Maton & G. Moholdt & L. S. Schmidt & D. A. Sutherland & I. Fer & F. Nilsen & J. Kohler & A. Sundfjord, 2024. "Ocean warming drives immediate mass loss from calving glaciers in the high Arctic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54825-7
    DOI: 10.1038/s41467-024-54825-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54825-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54825-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adrian Luckman & Douglas I. Benn & Finlo Cottier & Suzanne Bevan & Frank Nilsen & Mark Inall, 2015. "Calving rates at tidewater glaciers vary strongly with ocean temperature," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    2. Sigrid Lind & Randi B. Ingvaldsen & Tore Furevik, 2018. "Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import," Nature Climate Change, Nature, vol. 8(7), pages 634-639, July.
    3. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    4. Christian Schoof, 2010. "Ice-sheet acceleration driven by melt supply variability," Nature, Nature, vol. 468(7325), pages 803-806, December.
    5. Qi Shu & Qiang Wang & Zhenya Song & Fangli Qiao, 2021. "The poleward enhanced Arctic Ocean cooling machine in a warming climate," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hafver, Andreas & Jettestuen, Espen & Baetens, Jan M. & Malthe-Sørenssen, Anders, 2014. "Network formation by contact arrested propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 240-255.
    3. James E. Overland, 2021. "Rare events in the Arctic," Climatic Change, Springer, vol. 168(3), pages 1-13, October.
    4. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    5. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kovacs, Kit M. & Liston, Glen E. & Reinking, Adele K. & Gerland, Sebastian & Lydersen, Christian, 2024. "Climate warming impacts on ringed seal breeding habitat in Svalbard," Ecological Modelling, Elsevier, vol. 495(C).
    7. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Jie Huang & Robert S. Pickart & Zhuomin Chen & Rui Xin Huang, 2023. "Role of air-sea heat flux on the transformation of Atlantic Water encircling the Nordic Seas," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Jing Wei & Laurent Fontaine & Nicolas Valiente & Peter Dörsch & Dag O. Hessen & Alexander Eiler, 2023. "Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    11. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Caroline V. B. Gjelstrup & Mikael K. Sejr & Laura Steur & Jørgen Schou Christiansen & Mats A. Granskog & Boris P. Koch & Eva Friis Møller & Mie H. S. Winding & Colin A. Stedmon, 2022. "Vertical redistribution of principle water masses on the Northeast Greenland Shelf," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Christopher P. Loveluck & Levan G. Tielidze & Mikheil Elashvili & Andrei V. Kurbatov & Lela Gadrani & Nathaniel Erb-Satullo & Hans von Suchodoletz & Anca Dan & Hannes Laermanns & Helmut Brückner & Udo, 2024. "Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    14. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Xiaowei Lyu & Yong Zhang & Huanhuan Wang & Xin Wang, 2024. "Mass Balance of Maritime Glaciers in the Southeastern Tibetan Plateau during Recent Decades," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    16. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    17. Zeng, Lijun & Du, Wenjing & Zhao, Laijun & Zhan, Yanhong, 2023. "An inter-provincial transfer fee model under renewable portfolio standard policy," Energy, Elsevier, vol. 277(C).
    18. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    19. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Renlu Qiao & Shuo Gao & Xiaochang Liu & Li Xia & Guobin Zhang & Xi Meng & Zhiyu Liu & Mo Wang & Shiqi Zhou & Zhiqiang Wu, 2024. "Understanding the global subnational migration patterns driven by hydrological intrusion exposure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54825-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.