IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54621-3.html
   My bibliography  Save this article

Identification of HER2-positive breast cancer molecular subtypes with potential clinical implications in the ALTTO clinical trial

Author

Listed:
  • Mattia Rediti

    (Université Libre de Bruxelles (ULB)
    the AIRC Institute of Molecular Oncology)

  • David Venet

    (Université Libre de Bruxelles (ULB))

  • Andrea Joaquin Garcia

    (Université Libre de Bruxelles (ULB))

  • Marion Maetens

    (KU Leuven)

  • Delphine Vincent

    (Université Libre de Bruxelles (ULB))

  • Samira Majjaj

    (Université Libre de Bruxelles (ULB))

  • Sarra El-Abed

    (Breast International Group)

  • Serena Di Cosimo

    (Fondazione IRCCS Istituto Nazionale dei Tumori)

  • Takayuki Ueno

    (Japanese Foundation for Cancer Research)

  • Miguel Izquierdo

    (Novartis Pharma AG)

  • Martine Piccart

    (Université Libre de Bruxelles (ULB))

  • Lajos Pusztai

    (Yale Cancer Center)

  • Sherene Loi

    (Peter MacCallum Cancer Centre
    The University of Melbourne)

  • Roberto Salgado

    (Peter MacCallum Cancer Centre
    ZAS Hospitals)

  • Giuseppe Viale

    (European Institute of Oncology IRCCS)

  • Françoise Rothé

    (Université Libre de Bruxelles (ULB))

  • Christos Sotiriou

    (Université Libre de Bruxelles (ULB))

Abstract

In HER2-positive breast cancer, clinical outcome and sensitivity to HER2-targeted therapies are influenced by both tumor and microenvironment features. However, we are currently unable to depict the molecular heterogeneity of this disease with sufficient granularity. Here, by performing gene expression profiling in HER2-positive breast cancers from patients receiving adjuvant trastuzumab in the ALTTO clinical trial (NCT00490139), we identify and characterize five molecular subtypes associated with the risk of distant recurrence: immune-enriched, proliferative/metabolic-enriched, mesenchymal/stroma-enriched, luminal, and ERBB2-dependent. Additionally, we validate the biological profiles of the subtypes and explore their prognostic/predictive value in external cohorts, namely the NeoALTTO trial (NCT00553358), SCAN-B (NCT02306096), I-SPY2 (NCT01042379), METABRIC and TCGA. Immune-enriched tumors present better survival outcomes, in contrast to mesenchymal/stroma-enriched and proliferative/metabolic-enriched tumors, while luminal and ERBB2-dependent tumors are characterized by low and high rates of pathological complete response, respectively. Of note, these molecular subtypes provide the rationale for treatment approaches leveraging the heterogeneous biology of HER2-positive breast cancer.

Suggested Citation

  • Mattia Rediti & David Venet & Andrea Joaquin Garcia & Marion Maetens & Delphine Vincent & Samira Majjaj & Sarra El-Abed & Serena Di Cosimo & Takayuki Ueno & Miguel Izquierdo & Martine Piccart & Lajos , 2024. "Identification of HER2-positive breast cancer molecular subtypes with potential clinical implications in the ALTTO clinical trial," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54621-3
    DOI: 10.1038/s41467-024-54621-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54621-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54621-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alma Andersson & Ludvig Larsson & Linnea Stenbeck & Fredrik Salmén & Anna Ehinger & Sunny Z. Wu & Ghamdan Al-Eryani & Daniel Roden & Alex Swarbrick & Åke Borg & Jonas Frisén & Camilla Engblom & Joakim, 2021. "Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. Mattia Rediti & Aranzazu Fernandez-Martinez & David Venet & Françoise Rothé & Katherine A. Hoadley & Joel S. Parker & Baljit Singh & Jordan D. Campbell & Karla V. Ballman & David W. Hillman & Eric P. , 2023. "Immunological and clinicopathological features predict HER2-positive breast cancer prognosis in the neoadjuvant NeoALTTO and CALGB 40601 randomized trials," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Christina Curtis & Sohrab P. Shah & Suet-Feung Chin & Gulisa Turashvili & Oscar M. Rueda & Mark J. Dunning & Doug Speed & Andy G. Lynch & Shamith Samarajiwa & Yinyin Yuan & Stefan Gräf & Gavin Ha & Gh, 2012. "The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups," Nature, Nature, vol. 486(7403), pages 346-352, June.
    5. Ho, Daniel & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2011. "MatchIt: Nonparametric Preprocessing for Parametric Causal Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i08).
    6. Alison E. Smith & Emanuela Ferraro & Anton Safonov & Cristina Bernado Morales & Enrique J. Arenas Lahuerta & Qing Li & Amanda Kulick & Dara Ross & David B. Solit & Elisa Stanchina & Jorge Reis-Filho &, 2021. "HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Oscar M. Rueda & Stephen-John Sammut & Jose A. Seoane & Suet-Feung Chin & Jennifer L. Caswell-Jin & Maurizio Callari & Rajbir Batra & Bernard Pereira & Alejandra Bruna & H. Raza Ali & Elena Provenzano, 2019. "Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups," Nature, Nature, vol. 567(7748), pages 399-404, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    2. S. Mouron & M. J. Bueno & A. Lluch & L. Manso & I. Calvo & J. Cortes & J. A. Garcia-Saenz & M. Gil-Gil & N. Martinez-Janez & J. V. Apala & E. Caleiras & Pilar Ximénez-Embún & J. Muñoz & L. Gonzalez-Co, 2022. "Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Isabel Tundidor & Marta Seijo-Vila & Sandra Blasco-Benito & María Rubert-Hernández & Sandra Adámez & Clara Andradas & Sara Manzano & Isabel Álvarez-López & Cristina Sarasqueta & María Villa-Morales & , 2023. "Identification of fatty acid amide hydrolase as a metastasis suppressor in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Xiaoxiao Wang & David Venet & Frédéric Lifrange & Denis Larsimont & Mattia Rediti & Linnea Stenbeck & Floriane Dupont & Ghizlane Rouas & Andrea Joaquin Garcia & Ligia Craciun & Laurence Buisseret & Mi, 2024. "Spatial transcriptomics reveals substantial heterogeneity in triple-negative breast cancer with potential clinical implications," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Mohammadamin Edrisi & Xiru Huang & Huw A. Ogilvie & Luay Nakhleh, 2023. "Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    7. Liao, Chuan & Jung, Suhyun & Brown, Daniel G. & Agrawal, Arun, 2024. "Does land tenure change accelerate deforestation? A matching-based four-country comparison," Ecological Economics, Elsevier, vol. 215(C).
    8. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    9. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    10. Aleix Prat & Fara Brasó-Maristany & Olga Martínez-Sáez & Esther Sanfeliu & Youli Xia & Meritxell Bellet & Patricia Galván & Débora Martínez & Tomás Pascual & Mercedes Marín-Aguilera & Anna Rodríguez &, 2023. "Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    12. Quynh-Lam Tran & Gregorio Benitez & Fadi Shehadeh & Matthew Kaczynski & Eleftherios Mylonakis, 2022. "Clinical Outcomes Associated with SARS-CoV-2 Co-Infection with Rhinovirus and Adenovirus in Adults—A Retrospective Matched Cohort Study," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    13. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    14. Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).
    15. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    16. Chervier, Colas & Le Velly, Gwenolé & Ezzine-de-Blas, Driss, 2019. "When the Implementation of Payments for Biodiversity Conservation Leads to Motivation Crowding-out: A Case Study From the Cardamoms Forests, Cambodia," Ecological Economics, Elsevier, vol. 156(C), pages 499-510.
    17. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    18. Mansaray, Alhassan & Coleman, Simeon & Ataullah, Ali & Sirichand, Kavita, 2021. "Residual government ownership in public-private partnership projects," Journal of Government and Economics, Elsevier, vol. 4(C).
    19. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    20. Moritz Flubacher & George Sheldon & Adrian Müller, 2015. "Comparison of the Economic Performance between Organic and Conventional Dairy Farms in the Swiss Mountain Region Using Matching and Stochastic Frontier Analysis," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 7(1), pages 76-84.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54621-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.