IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v564y2018i7735d10.1038_s41586-018-0700-3.html
   My bibliography  Save this article

Deconstructive diversification of cyclic amines

Author

Listed:
  • Jose B. Roque

    (University of California)

  • Yusuke Kuroda

    (University of California)

  • Lucas T. Göttemann

    (University of California)

  • Richmond Sarpong

    (University of California)

Abstract

Deconstructive functionalization involves carbon–carbon (C–C) bond cleavage followed by bond construction on one or more of the constituent carbons. For example, ozonolysis1 and olefin metathesis2,3 have allowed each carbon in C=C double bonds to be viewed as a functional group. Despite the substantial advances in deconstructive functionalization involving the scission of C=C double bonds, there are very few methods that achieve C(sp3)–C(sp3) single-bond cleavage and functionalization, especially in relatively unstrained cyclic systems. Here we report a deconstructive strategy to transform saturated nitrogen heterocycles such as piperidines and pyrrolidines, which are important moieties in bioactive molecules, into halogen-containing acyclic amine derivatives through sequential C(sp3)–N and C(sp3)–C(sp3) single-bond cleavage followed by C(sp3)–halogen bond formation. The resulting acyclic haloamines are versatile intermediates that can be transformed into various structural motifs through substitution reactions. In this way we achieve the skeletal remodelling of cyclic amines, an example of scaffold hopping. We demonstrate this deconstructive strategy by the late-stage diversification of proline-containing peptides.

Suggested Citation

  • Jose B. Roque & Yusuke Kuroda & Lucas T. Göttemann & Richmond Sarpong, 2018. "Deconstructive diversification of cyclic amines," Nature, Nature, vol. 564(7735), pages 244-248, December.
  • Handle: RePEc:nat:nature:v:564:y:2018:i:7735:d:10.1038_s41586-018-0700-3
    DOI: 10.1038/s41586-018-0700-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0700-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0700-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Qin & Ting Guo & Ken Lin & Guigen Li & Hongjian Lu, 2023. "Synthesis of dienes from pyrrolidines using skeletal modification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ruining Li & Ya Dong & Shah Nawaz Khan & Muhammad Kashif Zaman & Junliang Zhou & Pannan Miao & Lifu Hu & Zhankui Sun, 2022. "Decarboxylative oxidation-enabled consecutive C-C bond cleavage," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Shaopeng Liu & Yong Yang & Qingmin Song & Zhaohong Liu & Paramasivam Sivaguru & Yifan Zhang & Graham Ruiter & Edward A. Anderson & Xihe Bi, 2024. "Halogencarbene-free Ciamician-Dennstedt single-atom skeletal editing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Hong Lu & Yu Zhang & Xiu-Hong Wang & Ran Zhang & Peng-Fei Xu & Hao Wei, 2024. "Carbon–nitrogen transmutation in polycyclic arenol skeletons to access N-heteroarenes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Rafał Roszak & Louis Gadina & Agnieszka Wołos & Ahmad Makkawi & Barbara Mikulak-Klucznik & Yasemin Bilgi & Karol Molga & Patrycja Gołębiowska & Oskar Popik & Tomasz Klucznik & Sara Szymkuć & Martyna M, 2024. "Systematic, computational discovery of multicomponent and one-pot reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:564:y:2018:i:7735:d:10.1038_s41586-018-0700-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.