IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i1d10.1038_s41893-022-00983-9.html
   My bibliography  Save this article

Regional economic potential for recycling consumer waste electronics in the United States

Author

Listed:
  • Peng Peng

    (Lawrence Berkeley National Laboratory)

  • Arman Shehabi

    (Lawrence Berkeley National Laboratory)

Abstract

Waste electronics are a growing environmental concern but also contain materials of great economic value. If properly recycled, waste electronics could enhance the sustainability of vital metal supply chains by offsetting the increasing demand for virgin mining. However, rapid changes in the size and composition of electronics complicate their end-of-life management. Here we couple material flow and geospatial analyses on over 90 critical consumer electronic products and find that over 1 billion devices, representing up to 1.5 million tonnes of mass, could be discarded annually in the United States by 2033. Emerging electronics such as connected home, health and augmented/virtual reality devices have become the fastest-growing types in the waste stream. We highlight policy opportunities to develop various sustainable circularity strategies around metal supply chains by showing the potential to integrate waste electronics and virgin mining pathways in western US regions, while new infrastructure designed specifically for waste electronics treatment is favourable in the central and eastern United States. Furthermore, we show the importance of building national-level refining and tear-down databases to improve electronics end-of-life management in the next decade.

Suggested Citation

  • Peng Peng & Arman Shehabi, 2023. "Regional economic potential for recycling consumer waste electronics in the United States," Nature Sustainability, Nature, vol. 6(1), pages 93-102, January.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:1:d:10.1038_s41893-022-00983-9
    DOI: 10.1038/s41893-022-00983-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-022-00983-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-022-00983-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Hong & Kangkang Jia & Yueyu Zhang & Ziyuan Li & Junlin Jia & Jing Chen & Qimin Liang & Huarui Sun & Qiang Gao & Dong Zhou & Ruhong Li & Xiaoli Dong & Xiulin Fan & Sisi He, 2024. "Energetic and durable all-polymer aqueous battery for sustainable, flexible power," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:1:d:10.1038_s41893-022-00983-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.