IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53788-z.html
   My bibliography  Save this article

On-chip petahertz electronics for single-shot phase detection

Author

Listed:
  • Felix Ritzkowsky

    (Deutsches Elektronen-Synchrotron DESY
    Massachusetts Institute of Technology)

  • Matthew Yeung

    (Massachusetts Institute of Technology)

  • Engjell Bebeti

    (Deutsches Elektronen-Synchrotron DESY)

  • Thomas Gebert

    (Max Planck Institute for the Structure and Dynamics of Matter
    WiredSense GmbH)

  • Toru Matsuyama

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • Matthias Budden

    (Max Planck Institute for the Structure and Dynamics of Matter
    WiredSense GmbH)

  • Roland E. Mainz

    (Deutsches Elektronen-Synchrotron DESY)

  • Huseyin Cankaya

    (Deutsches Elektronen-Synchrotron DESY)

  • Karl K. Berggren

    (Massachusetts Institute of Technology)

  • Giulio Maria Rossi

    (Deutsches Elektronen-Synchrotron DESY)

  • Phillip D. Keathley

    (Massachusetts Institute of Technology)

  • Franz X. Kärtner

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

Abstract

Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electronics, a system suitable for integration and capable of generating detectable signals with low pulse energies is needed. While current from plasmonic nanoantenna emitters can be driven at optical frequencies, low charge yields have been a significant limitation. In this work we demonstrate that large-scale electrically connected plasmonic nanoantenna networks, when driven in concert, enable charge yields sufficient for single-shot carrier-envelope phase detection at repetition rates exceeding tens of kilohertz. We not only show that limitations in single-shot CEP detection techniques can be overcome, but also demonstrate a flexible approach to optical frequency electronics in general, enabling future applications such as high sensitivity petahertz-bandwidth electric field sampling or logic-circuits.

Suggested Citation

  • Felix Ritzkowsky & Matthew Yeung & Engjell Bebeti & Thomas Gebert & Toru Matsuyama & Matthias Budden & Roland E. Mainz & Huseyin Cankaya & Karl K. Berggren & Giulio Maria Rossi & Phillip D. Keathley &, 2024. "On-chip petahertz electronics for single-shot phase detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53788-z
    DOI: 10.1038/s41467-024-53788-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53788-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53788-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip Dienstbier & Lennart Seiffert & Timo Paschen & Andreas Liehl & Alfred Leitenstorfer & Thomas Fennel & Peter Hommelhoff, 2023. "Tracing attosecond electron emission from a nanometric metal tip," Nature, Nature, vol. 616(7958), pages 702-706, April.
    2. Václav Hanus & Beatrix Fehér & Viktória Csajbók & Péter Sándor & Zsuzsanna Pápa & Judit Budai & Zilong Wang & Pallabi Paul & Adriana Szeghalmi & Péter Dombi, 2023. "Carrier-envelope phase on-chip scanner and control of laser beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Michael Krüger & Markus Schenk & Peter Hommelhoff, 2011. "Attosecond control of electrons emitted from a nanoscale metal tip," Nature, Nature, vol. 475(7354), pages 78-81, July.
    4. Agustin Schiffrin & Tim Paasch-Colberg & Nicholas Karpowicz & Vadym Apalkov & Daniel Gerster & Sascha Mühlbrandt & Michael Korbman & Joachim Reichert & Martin Schultze & Simon Holzner & Johannes V. Ba, 2013. "Optical-field-induced current in dielectrics," Nature, Nature, vol. 493(7430), pages 70-74, January.
    5. Martin Schultze & Elisabeth M. Bothschafter & Annkatrin Sommer & Simon Holzner & Wolfgang Schweinberger & Markus Fiess & Michael Hofstetter & Reinhard Kienberger & Vadym Apalkov & Vladislav S. Yakovle, 2013. "Controlling dielectrics with the electric field of light," Nature, Nature, vol. 493(7430), pages 75-78, January.
    6. Yujia Yang & Marco Turchetti & Praful Vasireddy & William P. Putnam & Oliver Karnbach & Alberto Nardi & Franz X. Kärtner & Karl K. Berggren & Phillip D. Keathley, 2020. "Light phase detection with on-chip petahertz electronic networks," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Luo & Frank Neubrech & Alberto Martin-Jimenez & Na Liu & Klaus Kern & Manish Garg, 2024. "Real-time tracking of coherent oscillations of electrons in a nanodevice by photo-assisted tunnelling," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Kotaro Ogawa & Natsuki Kanda & Yuta Murotani & Ryusuke Matsunaga, 2024. "Programmable generation of counterrotating bicircular light pulses in the multi-terahertz frequency range," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Václav Hanus & Beatrix Fehér & Viktória Csajbók & Péter Sándor & Zsuzsanna Pápa & Judit Budai & Zilong Wang & Pallabi Paul & Adriana Szeghalmi & Péter Dombi, 2023. "Carrier-envelope phase on-chip scanner and control of laser beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yudong Yang & Roland E. Mainz & Giulio Maria Rossi & Fabian Scheiba & Miguel A. Silva-Toledo & Phillip D. Keathley & Giovanni Cirmi & Franz X. Kärtner, 2021. "Strong-field coherent control of isolated attosecond pulse generation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Enrico Ridente & Mikhail Mamaikin & Najd Altwaijry & Dmitry Zimin & Matthias F. Kling & Vladimir Pervak & Matthew Weidman & Ferenc Krausz & Nicholas Karpowicz, 2022. "Electro-optic characterization of synthesized infrared-visible light fields," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Maximilian Mattes & Mikhail Volkov & Peter Baum, 2024. "Femtosecond electron beam probe of ultrafast electronics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. M. Ossiander & K. Golyari & K. Scharl & L. Lehnert & F. Siegrist & J. P. Bürger & D. Zimin & J. A. Gessner & M. Weidman & I. Floss & V. Smejkal & S. Donsa & C. Lemell & F. Libisch & N. Karpowicz & J. , 2022. "The speed limit of optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Johannes Schötz & Ancyline Maliakkal & Johannes Blöchl & Dmitry Zimin & Zilong Wang & Philipp Rosenberger & Meshaal Alharbi & Abdallah M. Azzeer & Matthew Weidman & Vladislav S. Yakovlev & Boris Bergu, 2022. "The emergence of macroscopic currents in photoconductive sampling of optical fields," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. S. Sharma & D. Gill & J. Krishna & J. K. Dewhurst & S. Shallcross, 2024. "Direct coupling of light to valley current," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Jan Reislöhner & Doyeong Kim & Ihar Babushkin & Adrian N. Pfeiffer, 2022. "Onset of Bloch oscillations in the almost-strong-field regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53788-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.