IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45744-8.html
   My bibliography  Save this article

Femtosecond electron beam probe of ultrafast electronics

Author

Listed:
  • Maximilian Mattes

    (Universität Konstanz, Universitätsstraße 10)

  • Mikhail Volkov

    (Universität Konstanz, Universitätsstraße 10)

  • Peter Baum

    (Universität Konstanz, Universitätsstraße 10)

Abstract

The need for ever-faster information processing requires exceptionally small devices that operate at frequencies approaching the terahertz and petahertz regimes. For the diagnostics of such devices, researchers need a spatiotemporal tool that surpasses the device under test in speed and spatial resolution. Consequently, such a tool cannot be provided by electronics itself. Here we show how ultrafast electron beam probe with terahertz-compressed electron pulses can directly sense local electro-magnetic fields in electronic devices with femtosecond, micrometre and millivolt resolution under normal operation conditions. We analyse the dynamical response of a coplanar waveguide circuit and reveal the impulse response, signal reflections, attenuation and waveguide dispersion directly in the time domain. The demonstrated measurement bandwidth reaches 10 THz and the sensitivity to electric potentials is tens of millivolts or −20 dBm. Femtosecond time resolution and the capability to directly integrate our technique into existing electron-beam inspection devices in semiconductor industry makes our femtosecond electron beam probe a promising tool for research and development of next-generation electronics at unprecedented speed and size.

Suggested Citation

  • Maximilian Mattes & Mikhail Volkov & Peter Baum, 2024. "Femtosecond electron beam probe of ultrafast electronics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45744-8
    DOI: 10.1038/s41467-024-45744-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45744-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45744-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melanie Müller & Alexander Paarmann & Ralph Ernstorfer, 2014. "Femtosecond electrons probing currents and atomic structure in nanomaterials," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Mohammad Samizadeh Nikoo & Elison Matioli, 2023. "Electronic metadevices for terahertz applications," Nature, Nature, vol. 614(7948), pages 451-455, February.
    3. M. Ossiander & K. Golyari & K. Scharl & L. Lehnert & F. Siegrist & J. P. Bürger & D. Zimin & J. A. Gessner & M. Weidman & I. Floss & V. Smejkal & S. Donsa & C. Lemell & F. Libisch & N. Karpowicz & J. , 2022. "The speed limit of optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Martin Schultze & Elisabeth M. Bothschafter & Annkatrin Sommer & Simon Holzner & Wolfgang Schweinberger & Markus Fiess & Michael Hofstetter & Reinhard Kienberger & Vadym Apalkov & Vladislav S. Yakovle, 2013. "Controlling dielectrics with the electric field of light," Nature, Nature, vol. 493(7430), pages 75-78, January.
    5. David Nabben & Joel Kuttruff & Levin Stolz & Andrey Ryabov & Peter Baum, 2023. "Attosecond electron microscopy of sub-cycle optical dynamics," Nature, Nature, vol. 619(7968), pages 63-67, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2023. "A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yudong Yang & Roland E. Mainz & Giulio Maria Rossi & Fabian Scheiba & Miguel A. Silva-Toledo & Phillip D. Keathley & Giovanni Cirmi & Franz X. Kärtner, 2021. "Strong-field coherent control of isolated attosecond pulse generation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Enrico Ridente & Mikhail Mamaikin & Najd Altwaijry & Dmitry Zimin & Matthias F. Kling & Vladimir Pervak & Matthew Weidman & Ferenc Krausz & Nicholas Karpowicz, 2022. "Electro-optic characterization of synthesized infrared-visible light fields," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Takashi Arikawa & Jaeyong Kim & Toshikazu Mukai & Naoki Nishigami & Masayuki Fujita & Tadao Nagatsuma & Koichiro Tanaka, 2024. "Phase-resolved measurement and control of ultrafast dynamics in terahertz electronic oscillators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. M. Ossiander & K. Golyari & K. Scharl & L. Lehnert & F. Siegrist & J. P. Bürger & D. Zimin & J. A. Gessner & M. Weidman & I. Floss & V. Smejkal & S. Donsa & C. Lemell & F. Libisch & N. Karpowicz & J. , 2022. "The speed limit of optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Jan Reislöhner & Doyeong Kim & Ihar Babushkin & Adrian N. Pfeiffer, 2022. "Onset of Bloch oscillations in the almost-strong-field regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Kotaro Ogawa & Natsuki Kanda & Yuta Murotani & Ryusuke Matsunaga, 2024. "Programmable generation of counterrotating bicircular light pulses in the multi-terahertz frequency range," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Cheng-Hsien Yeh & Wen-Dung Hsu & Bernard Haochih Liu & Chan-Shan Yang & Chen-Yun Kuan & Yuan-Chun Chang & Kai-Sheng Huang & Song-Syun Jhang & Chia-Yen Lu & Peter K. Liaw & Chuan-Feng Shih, 2024. "Low-frequency conductivity of low wear high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45744-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.