IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53753-w.html
   My bibliography  Save this article

The biogeography of soil microbiome potential growth rates

Author

Listed:
  • Zhenghu Zhou

    (Harbin
    Harbin)

  • Chuankuan Wang

    (Harbin)

  • Xinyu Cha

    (Yangling)

  • Tao Zhou

    (Harbin
    Harbin)

  • Xuesen Pang

    (Harbin
    Harbin)

  • Fazhu Zhao

    (Xi’an)

  • Xinhui Han

    (Yangling)

  • Gaihe Yang

    (Yangling)

  • Gehong Wei

    (Yangling)

  • Chengjie Ren

    (Yangling)

Abstract

Soil microbial growth, a vital biogeochemical process, governs both the accrual and loss of soil carbon. Here, we investigate the biogeography of soil microbiome potential growth rates and show that microbiomes in resource-rich (high organic matter and nutrients) and acid-neutral soils from cold and humid regions exhibit high potential growth. Conversely, in resource-poor, dry, hot, and hypersaline soils, soil microbiomes display lower potential growth rates, suggesting trade-offs between growth and resource acquisition or stress tolerance. In addition, the potential growth rates of soil microbiomes positively correlates with genome size and the number of ribosomal RNA operons but negatively correlates with optimum temperature, biomass carbon-to-phosphorus and nitrogen-to-phosphorus ratios. The spatial variation of microbial potential growth rates aligns with several macroecological theories. These findings not only enhance our understanding of microbial adaptation to diverse environments but also aid in realistically parameterizing microbial physiology in soil carbon cycling models.

Suggested Citation

  • Zhenghu Zhou & Chuankuan Wang & Xinyu Cha & Tao Zhou & Xuesen Pang & Fazhu Zhao & Xinhui Han & Gaihe Yang & Gehong Wei & Chengjie Ren, 2024. "The biogeography of soil microbiome potential growth rates," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53753-w
    DOI: 10.1038/s41467-024-53753-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53753-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53753-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feng Tao & Yuanyuan Huang & Bruce A. Hungate & Stefano Manzoni & Serita D. Frey & Michael W. I. Schmidt & Markus Reichstein & Nuno Carvalhais & Philippe Ciais & Lifen Jiang & Johannes Lehmann & Ying-P, 2023. "Microbial carbon use efficiency promotes global soil carbon storage," Nature, Nature, vol. 618(7967), pages 981-985, June.
    2. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Cong Wang & Qing-Yi Yu & Niu-Niu Ji & Yong Zheng & John W. Taylor & Liang-Dong Guo & Cheng Gao, 2023. "Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhenghu Zhou & Chuankuan Wang & Yiqi Luo, 2020. "Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Chengjie Ren & Zhenghu Zhou & Manuel Delgado-Baquerizo & Felipe Bastida & Fazhu Zhao & Yuanhe Yang & Shuohong Zhang & Jieying Wang & Chao Zhang & Xinhui Han & Jun Wang & Gaihe Yang & Gehong Wei, 2024. "Thermal sensitivity of soil microbial carbon use efficiency across forest biomes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Z.Y. Yuan & Han Y.H. Chen & Peter B. Reich, 2011. "Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest D. Osburn & Steven G. McBride & Mohammad Bahram & Michael S. Strickland, 2024. "Global patterns in the growth potential of soil bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Z Y Yuan & Han Y H Chen, 2012. "Indirect Methods Produce Higher Estimates of Fine Root Production and Turnover Rates than Direct Methods," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-6, November.
    4. Guillaume Patoine & Nico Eisenhauer & Simone Cesarz & Helen R. P. Phillips & Xiaofeng Xu & Lihua Zhang & Carlos A. Guerra, 2024. "Reply to: Field experiments show no consistent reductions in soil microbial carbon in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    5. Liu, Ling & Zheng, Hui-fang & Liu, Zhen & Ma, Yu-Zhao & Han, Hui-fang & Ning, Tang-yuan, 2023. "Crop – Livestock integration via maize straw recycling increased carbon sequestration and crop production in China," Agricultural Systems, Elsevier, vol. 210(C).
    6. Chengjie Ren & Zhenghu Zhou & Manuel Delgado-Baquerizo & Felipe Bastida & Fazhu Zhao & Yuanhe Yang & Shuohong Zhang & Jieying Wang & Chao Zhang & Xinhui Han & Jun Wang & Gaihe Yang & Gehong Wei, 2024. "Thermal sensitivity of soil microbial carbon use efficiency across forest biomes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Chao Yue & Jinshi Jian & Philippe Ciais & Xiaohua Ren & Juying Jiao & Shaoshan An & Yu Li & Jie Wu & Pengyi Zhang & Ben Bond-Lamberty, 2024. "Field experiments show no consistent reductions in soil microbial carbon in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    8. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    9. Dandan Song & Yuanquan Cui & Dalong Ma & Xin Li & Lin Liu, 2022. "Spatial Variation of Microbial Community Structure and Its Driving Environmental Factors in Two Forest Types in Permafrost Region of Greater Xing′an Mountains," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    10. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yi-Fei Wang & Yan-Jie Liu & Yan-Mei Fu & Jia-Yang Xu & Tian-Lun Zhang & Hui-Ling Cui & Min Qiao & Matthias C. Rillig & Yong-Guan Zhu & Dong Zhu, 2024. "Microplastic diversity increases the abundance of antibiotic resistance genes in soil," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Shuang Yang & Zhaoyong Shi & Yichun Sun & Xiaohui Wang & Wenya Yang & Jiakai Gao & Xugang Wang, 2022. "Stoichiometric Ratios of Carbon, Nitrogen and Phosphorus of Shrub Organs Vary with Mycorrhizal Type," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    13. Xiaogang Li & Dele Chen & Víctor J. Carrión & Daniel Revillini & Shan Yin & Yuanhua Dong & Taolin Zhang & Xingxiang Wang & Manuel Delgado-Baquerizo, 2023. "Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Guillaume Patoine & Nico Eisenhauer & Simone Cesarz & Helen R. P. Phillips & Xiaofeng Xu & Lihua Zhang & Carlos A. Guerra, 2022. "Drivers and trends of global soil microbial carbon over two decades," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Jing Tian & Jennifer A. J. Dungait & Ruixing Hou & Ye Deng & Iain P. Hartley & Yunfeng Yang & Yakov Kuzyakov & Fusuo Zhang & M. Francesca Cotrufo & Jizhong Zhou, 2024. "Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Helong Yang & Yiqiang Dong & Shazhou An & Zongjiu Sun & Peiying Li & Huixia Liu, 2024. "Effects of temporal variation and grazing intensity on leaf C:N:P stoichiometry in Northwest desert, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(3), pages 154-163.
    17. Gaowen Yang & Masahiro Ryo & Julien Roy & Daniel R. Lammel & Max-Bernhard Ballhausen & Xin Jing & Xuefeng Zhu & Matthias C. Rillig, 2022. "Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Hui Wei & Jiayue Yang & Ziqiang Liu & Jiaen Zhang, 2022. "Data Integration Analysis Indicates That Soil Texture and pH Greatly Influence the Acid Buffering Capacity of Global Surface Soils," Sustainability, MDPI, vol. 14(5), pages 1-11, March.
    19. Tessa Camenzind & Carlos A. Aguilar-Trigueros & Stefan Hempel & Anika Lehmann & Milos Bielcik & Diana R. Andrade-Linares & Joana Bergmann & Jeane Cruz & Jessie Gawronski & Polina Golubeva & Heike Hasl, 2024. "Towards establishing a fungal economics spectrum in soil saprobic fungi," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53753-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.