IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1346.html
   My bibliography  Save this article

Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus

Author

Listed:
  • Z.Y. Yuan

    (Faculty of Natural Resources Management, Lakehead University)

  • Han Y.H. Chen

    (Faculty of Natural Resources Management, Lakehead University
    College of Forestry and Gardening, Anhui Agricultural University)

  • Peter B. Reich

    (University of Minnesota
    Hawkesbury Institute for the Environment, University of Western Sydney)

Abstract

Most water and essential soil nutrient uptake is carried out by fine roots in plants. It is therefore important to understand the global geographic patterns of fine-root nitrogen and phosphorus cycling. Here, by compiling plant root data from 211 studies in 51 countries, we show that live fine roots have low nitrogen (N) and phosphorus (P), but similar N:P ratios when compared with green leaves. The fine-root N:P ratio differs between biomes and declines exponentially with latitude in roots of all diameter classes. This is in contrast to previous reports of a linear latitudinal decline in green leaf N:P, but consistent with nonlinear declines in leaf litter N:P. Whereas the latitudinal N:P decline in both roots and leaves reflects collective influences of climate, soil age and weathering, differences in the shape of the response function may be a result of their different N and P use strategies.

Suggested Citation

  • Z.Y. Yuan & Han Y.H. Chen & Peter B. Reich, 2011. "Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1346
    DOI: 10.1038/ncomms1346
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1346
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Yang & Zhaoyong Shi & Yichun Sun & Xiaohui Wang & Wenya Yang & Jiakai Gao & Xugang Wang, 2022. "Stoichiometric Ratios of Carbon, Nitrogen and Phosphorus of Shrub Organs Vary with Mycorrhizal Type," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    2. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    3. Helong Yang & Yiqiang Dong & Shazhou An & Zongjiu Sun & Peiying Li & Huixia Liu, 2024. "Effects of temporal variation and grazing intensity on leaf C:N:P stoichiometry in Northwest desert, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(3), pages 154-163.
    4. Z Y Yuan & Han Y H Chen, 2012. "Indirect Methods Produce Higher Estimates of Fine Root Production and Turnover Rates than Direct Methods," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-6, November.
    5. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.