IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53461-5.html
   My bibliography  Save this article

Light-modulated van der Waals force microscopy

Author

Listed:
  • Yu-Xiao Han

    (Tsinghua University)

  • Benfeng Bai

    (Tsinghua University)

  • Jian-Yu Zhang

    (Tsinghua University)

  • Jia-Tai Huang

    (Tsinghua University)

  • Peng-Yi Feng

    (Tsinghua University)

  • Hong-Bo Sun

    (Tsinghua University)

Abstract

Atomic force microscope generally works by manipulating the absolute magnitude of the van der Waals force between tip and specimen. This force is, however, less sensitive to atom species than to tip-sample separations, making compositional identification difficult, even under multi-modal strategies or other atomic force microscopy variations. Here, we report the phenomenon of a light-modulated tip-sample van der Waals force whose magnitude is found to be material specific, which can be employed to discriminate heterogeneous compositions of materials. We thus establish a near-field microscopic method, named light-modulated van der Waals force microscopy. Experiments discriminating heterogeneous crystalline phases or compositions in typical materials demonstrate a high compositional resolving capability, represented by a 20 dB signal-to-noise ratio on a MoTe2 film under the excitation of a 633 nm laser of 1.2 mW, alongside a sub-10 nm lateral spatial resolution, smaller than the tip size of 20 nm. The simplicity of the light modulation mechanism, minute excitation light power, broadband excitation wavelength, and diversity of the applicable materials imply broad applications of this method on material characterization, particularly on two-dimensional materials that are promising candidates for next-generation chips.

Suggested Citation

  • Yu-Xiao Han & Benfeng Bai & Jian-Yu Zhang & Jia-Tai Huang & Peng-Yi Feng & Hong-Bo Sun, 2024. "Light-modulated van der Waals force microscopy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53461-5
    DOI: 10.1038/s41467-024-53461-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53461-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53461-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Gou & Hua Bai & Xuanlin Zhang & Yu Li Huang & Sisheng Duan & A. Ariando & Shengyuan A. Yang & Lan Chen & Yunhao Lu & Andrew Thye Shen Wee, 2023. "Two-dimensional ferroelectricity in a single-element bismuth monolayer," Nature, Nature, vol. 617(7959), pages 67-72, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanzhao Li & Mykola Telychko & Yue Zheng & Shurong Yuan & Zhenyue Wu & Walter P. D. Wong & Yixin Li & Yuanyuan Jin & Weng Fu Io & Xinyun Wang & Junhao Lin & Jianhua Hao & Cheng Han & Kai Leng, 2024. "Switchable planar chirality and spin texture in highly ordered ferroelectric hybrid perovskite domains," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Fan Zhang & Zhe Wang & Lixuan Liu & Anmin Nie & Yanxing Li & Yongji Gong & Wenguang Zhu & Chenggang Tao, 2024. "Atomic-scale manipulation of polar domain boundaries in monolayer ferroelectric In2Se3," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Jinlei Zhang & Jiayong Zhang & Yaping Qi & Shuainan Gong & Hang Xu & Zhenqi Liu & Ran Zhang & Mohammad A. Sadi & Demid Sychev & Run Zhao & Hongbin Yang & Zhenping Wu & Dapeng Cui & Lin Wang & Chunlan , 2024. "Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Qifeng Hu & Yuqiang Huang & Yang Wang & Sujuan Ding & Minjie Zhang & Chenqiang Hua & Linjun Li & Xiangfan Xu & Jinbo Yang & Shengjun Yuan & Kenji Watanabe & Takashi Taniguchi & Yunhao Lu & Chuanhong J, 2024. "Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Shulin Zhong & Xuanlin Zhang & Jian Gou & Lan Chen & Su-Huai Wei & Shengyuan A. Yang & Yunhao Lu, 2024. "Lone-pair activated ferroelectricity and stable charged domain wall in Bi monolayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53461-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.